diff --git a/sourcestats.c b/sourcestats.c index a18b8b2..847d81f 100644 --- a/sourcestats.c +++ b/sourcestats.c @@ -463,7 +463,7 @@ correct_asymmetry(SST_Stats inst, double *times_back, double *offsets) time. E.g. a value of 4 means that we think the standard deviation is four times the fluctuation of the peer distance */ -#define SD_TO_DIST_RATIO 1.0 +#define SD_TO_DIST_RATIO 0.7 /* ================================================== */ /* This function runs the linear regression operation on the data. It @@ -483,7 +483,7 @@ SST_DoNewRegression(SST_Stats inst) int best_start, times_back_start; double est_intercept, est_slope, est_var, est_intercept_sd, est_slope_sd; int i, j, nruns; - double min_distance, mean_distance; + double min_distance, median_distance; double sd_weight, sd; double old_skew, old_freq, stress; double precision; @@ -495,21 +495,21 @@ SST_DoNewRegression(SST_Stats inst) offsets[i + inst->runs_samples] = inst->offsets[get_runsbuf_index(inst, i)]; } - for (i = 0, mean_distance = 0.0, min_distance = DBL_MAX; i < inst->n_samples; i++) { + for (i = 0, min_distance = DBL_MAX; i < inst->n_samples; i++) { j = get_buf_index(inst, i); peer_distances[i] = 0.5 * inst->peer_delays[get_runsbuf_index(inst, i)] + inst->peer_dispersions[j]; - mean_distance += peer_distances[i]; if (peer_distances[i] < min_distance) { min_distance = peer_distances[i]; } } - mean_distance /= inst->n_samples; /* And now, work out the weight vector */ precision = LCL_GetSysPrecisionAsQuantum(); - sd = (mean_distance - min_distance) / SD_TO_DIST_RATIO; + median_distance = RGR_FindMedian(peer_distances, inst->n_samples); + + sd = (median_distance - min_distance) / SD_TO_DIST_RATIO; sd = CLAMP(precision, sd, min_distance); min_distance += precision;