sys_solaris: use timex driver

Remove driver functions based on adjtime() and switch to the new timex
driver. The kernel allows the timex frequency to be set in the full
range of int32_t, which gives a maximum frequency of 32768 ppm. Round
the limit to 32500 ppm.
This commit is contained in:
Miroslav Lichvar 2015-09-18 10:29:47 +02:00
parent 1d2b481069
commit 8feb37df2b
2 changed files with 7 additions and 427 deletions

6
configure vendored
View file

@ -387,10 +387,8 @@ case $OPERATINGSYSTEM in
echo "Configuring for MacOS X (" $SYSTEM "MacOS X version" $VERSION ")"
;;
SunOS)
# Doug Woodward <dougw@whistler.com> reported that this configuration
# works for Solaris 2.8 / SunOS 5.8 on x86 platforms
EXTRA_OBJECTS="sys_solaris.o"
EXTRA_LIBS="-lsocket -lnsl -lkvm -lelf -lresolv"
EXTRA_OBJECTS="sys_generic.o sys_solaris.o sys_timex.o"
EXTRA_LIBS="-lsocket -lnsl -lresolv"
EXTRA_CLI_LIBS="-lsocket -lnsl -lresolv"
add_def SOLARIS
# These are needed to have msg_control in struct msghdr

View file

@ -26,420 +26,18 @@
#include "config.h"
#ifdef SOLARIS
#include <kvm.h>
#include <fcntl.h>
#include <nlist.h>
#include <assert.h>
#include <sys/time.h>
#include <sys/utsname.h>
#include <stdio.h>
#include "sysincl.h"
#include "sys_solaris.h"
#include "localp.h"
#include "sched.h"
#include "logging.h"
#include "util.h"
/* ================================================== */
/* This register contains the number of seconds by which the local
clock was estimated to be fast of reference time at the epoch when
gettimeofday() returned T0 */
static double offset_register;
/* This register contains the epoch to which the offset is referenced */
static struct timeval T0;
/* This register contains the current estimate of the system
frequency, in absolute (NOT ppm) */
static double current_freq;
/* This register contains the number of seconds of adjustment that
were passed to adjtime last time it was called. */
static double adjustment_requested;
/* ================================================== */
/* On Solaris 2.5 & 2.5.1, passing an argument of zero as the new
delta to adjtime does not zero out the adjustment - the remaining
adjustment is returned as the old delta arg, but the adjustment keeps
running. To get round this, we set adjustments of +/-1us when we
really want zero. Alternate adjustments are used to avoid a drift
from building up. */
static struct timeval zeroes[2] = {
{0, 1},
{-1, 999999}
};
static int index=0;
/* If 1, need to run dosynctodr(). If 0, don't */
static int need_dosynctodr = -1;
/* Interval in seconds between adjustments to cancel systematic drift */
#define DRIFT_REMOVAL_INTERVAL (4.0)
#define GET_ZERO (zeroes[index^=1])
/* ================================================== */
static void
clock_initialise(void)
{
struct timeval newadj, oldadj;
offset_register = 0.0;
adjustment_requested = 0.0;
current_freq = 0.0;
if (gettimeofday(&T0, NULL) < 0) {
LOG_FATAL(LOGF_SysSolaris, "gettimeofday() failed");
}
newadj = GET_ZERO;
if (adjtime(&newadj, &oldadj) < 0) {
LOG_FATAL(LOGF_SysSolaris, "adjtime() failed");
}
if (adjtime(&newadj, &oldadj) < 0) {
LOG_FATAL(LOGF_SysSolaris, "adjtime() failed");
}
}
/* ================================================== */
static void
clock_finalise(void)
{
/* Nothing to do yet */
}
/* ================================================== */
static void
start_adjust(void)
{
struct timeval newadj, oldadj;
struct timeval T1;
double elapsed, accrued_error, predicted_error;
double adjust_required;
struct timeval exact_newadj;
double rounding_error;
double old_adjust_remaining;
/* Determine the amount of error built up since the last adjustment */
if (gettimeofday(&T1, NULL) < 0) {
LOG_FATAL(LOGF_SysSolaris, "gettimeofday() failed");
}
UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0);
accrued_error = elapsed * current_freq;
predicted_error = DRIFT_REMOVAL_INTERVAL / 2.0 * current_freq;
adjust_required = - (accrued_error + offset_register + predicted_error);
UTI_DoubleToTimeval(adjust_required, &exact_newadj);
/* At this point, we will need to call the adjustment rounding
algorithm in the system-specific layer. For now, just assume the
adjustment can be applied exactly. */
newadj = exact_newadj;
/* Want to *add* rounding error back onto offset register */
UTI_DiffTimevalsToDouble(&rounding_error, &exact_newadj, &newadj);
if (adjtime(&newadj, &oldadj) < 0) {
LOG_FATAL(LOGF_SysSolaris, "adjtime() failed");
}
UTI_TimevalToDouble(&oldadj, &old_adjust_remaining);
offset_register = rounding_error - old_adjust_remaining - predicted_error;
T0 = T1;
UTI_TimevalToDouble(&newadj, &adjustment_requested);
}
/* ================================================== */
static void
stop_adjust(void)
{
struct timeval T1;
struct timeval zeroadj, remadj;
double adjustment_remaining, adjustment_achieved;
double elapsed, elapsed_plus_adjust;
zeroadj = GET_ZERO;
if (adjtime(&zeroadj, &remadj) < 0) {
LOG_FATAL(LOGF_SysSolaris, "adjtime() failed");
}
if (gettimeofday(&T1, NULL) < 0) {
LOG_FATAL(LOGF_SysSolaris, "gettimeofday() failed");
}
UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0);
UTI_TimevalToDouble(&remadj, &adjustment_remaining);
adjustment_achieved = adjustment_requested - adjustment_remaining;
elapsed_plus_adjust = elapsed - adjustment_achieved;
offset_register += current_freq * elapsed_plus_adjust - adjustment_remaining;
adjustment_requested = 0.0;
T0 = T1;
}
/* ================================================== */
/* Positive offset means system clock is fast of true time, therefore
slew backwards */
static void
accrue_offset(double offset, double corr_rate)
{
stop_adjust();
offset_register += offset;
start_adjust();
}
/* ================================================== */
/* Positive offset means system clock is fast of true time, therefore
step backwards */
static int
apply_step_offset(double offset)
{
struct timeval old_time, new_time, rounded_new_time, T1;
double rounding_error;
stop_adjust();
if (gettimeofday(&old_time, NULL) < 0) {
LOG_FATAL(LOGF_SysSolaris, "gettimeofday() failed");
}
UTI_AddDoubleToTimeval(&old_time, -offset, &new_time);
/* The settimeofday function (on Solaris 2.5/Sparc20 at least) does
not work quite as we would want. The time we want to set is
rounded to the nearest second and that time is used. Also, the
clock appears to start from that second boundary plus about 4ms.
For now we'll tolerate this small error. */
rounded_new_time.tv_usec = 0;
if (new_time.tv_usec >= 500000) {
rounded_new_time.tv_sec = new_time.tv_sec + 1;
} else {
rounded_new_time.tv_sec = new_time.tv_sec;
}
UTI_DiffTimevalsToDouble(&rounding_error, &rounded_new_time, &new_time);
if (settimeofday(&new_time, NULL) < 0) {
DEBUG_LOG(LOGF_SysSolaris, "settimeofday() failed");
return 0;
}
UTI_AddDoubleToTimeval(&T0, offset, &T1);
T0 = T1;
offset_register += rounding_error;
start_adjust();
return 1;
}
/* ================================================== */
static double
set_frequency(double new_freq_ppm)
{
stop_adjust();
current_freq = new_freq_ppm * 1.0e-6;
start_adjust();
return current_freq * 1.0e6;
}
/* ================================================== */
static double
read_frequency(void)
{
return current_freq * 1.0e6;
}
/* ================================================== */
static void
get_offset_correction(struct timeval *raw,
double *corr, double *err)
{
stop_adjust();
*corr = -offset_register;
start_adjust();
if (err)
*err = 0.0;
}
/* ================================================== */
static void
immediate_step(void)
{
}
/* ================================================== */
static int drift_removal_running = 0;
static SCH_TimeoutID drift_removal_id;
/* ================================================== */
/* This is the timer callback routine which is called periodically to
invoke a time adjustment to take out the machine's drift.
Otherwise, times reported through this software (e.g. by running
ntpdate from another machine) show the machine being correct (since
they correct for drift build-up), but any program on this machine
that reads the system time will be given an erroneous value, the
degree of error depending on how long it is since
get_offset_correction was last called. */
static void
drift_removal_timeout(SCH_ArbitraryArgument not_used)
{
stop_adjust();
start_adjust();
drift_removal_id = SCH_AddTimeoutByDelay(DRIFT_REMOVAL_INTERVAL, drift_removal_timeout, NULL);
}
/* ================================================== */
static void
check_need_dosynctodr(void)
{
struct utsname name;
int result;
int major, minor, veryminor, n_fields;
result = uname(&name);
if (result < 0) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Cannot use uname to detect Solaris version");
need_dosynctodr = 0; /* Assume recent Solaris where it isn't needed */
return;
}
n_fields = sscanf(name.release, "%d.%d.%d\n", &major, &minor, &veryminor);
if (n_fields < 2) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Solaris version doesn't appear to be of the form X.Y[.Z]");
need_dosynctodr = 0; /* Assume recent Solaris where it isn't needed */
return;
}
if (major != 5) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Solaris major version doesn't appear to be 5");
need_dosynctodr = 0; /* Assume recent Solaris where it isn't needed */
return;
}
/* The 'rule of thumb' is that from Solaris 2.6 onwards, dosynctodr() doesn't
* need to be called, and in fact it is counter-productive to do so. For
* earlier versions, it is required. */
if (minor < 6) {
need_dosynctodr = 1;
} else {
need_dosynctodr = 0;
}
}
/* ================================================== */
static void
set_dosynctodr(unsigned long on_off)
{
static struct nlist nl[] = {
{"dosynctodr"},
{NULL}
};
kvm_t *kt;
unsigned long read_back;
assert(on_off == 1 || on_off == 0);
kt = kvm_open(NULL, NULL, NULL, O_RDWR, NULL);
if (!kt) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Cannot open kvm to change dosynctodr");
return;
}
if (kvm_nlist(kt, nl) < 0) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Cannot read dosynctodr in nlist");
kvm_close(kt);
return;
}
if (kvm_write(kt, nl[0].n_value, (char *)(&on_off), sizeof(unsigned long)) < 0) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Cannot write to dosynctodr");
kvm_close(kt);
return;
}
if (kvm_read(kt, nl[0].n_value, (char *)(&read_back), sizeof(unsigned long)) < 0) {
LOG(LOGS_ERR, LOGF_SysSolaris, "Cannot read from dosynctodr");
kvm_close(kt);
return;
}
kvm_close(kt);
assert(read_back == on_off);
}
#include "sys_timex.h"
/* ================================================== */
void
SYS_Solaris_Initialise(void)
{
check_need_dosynctodr();
/* Need to do KVM stuff to turn off dosynctodr. */
clock_initialise();
lcl_RegisterSystemDrivers(read_frequency, set_frequency,
accrue_offset, apply_step_offset,
get_offset_correction,
NULL /* set_leap */,
NULL /* set_sync_status */);
/* Turn off the kernel switch that keeps the system clock in step
with the non-volatile clock */
if (need_dosynctodr) {
set_dosynctodr(0);
}
drift_removal_id = SCH_AddTimeoutByDelay(DRIFT_REMOVAL_INTERVAL, drift_removal_timeout, NULL);
drift_removal_running = 1;
/* The kernel allows the frequency to be set in the full range off int32_t */
SYS_Timex_InitialiseWithFunctions(32500, 1.0 / 100, NULL, NULL, NULL);
}
/* ================================================== */
@ -447,21 +45,5 @@ SYS_Solaris_Initialise(void)
void
SYS_Solaris_Finalise(void)
{
if (drift_removal_running) {
SCH_RemoveTimeout(drift_removal_id);
SYS_Timex_Finalise();
}
clock_finalise();
/* When exiting, we want to return the machine to its 'autonomous'
tracking mode */
if (need_dosynctodr) {
set_dosynctodr(1);
}
}
/* ================================================== */
#endif /* SOLARIS */