refclock: split off median filter

Move the implementation of the median filter to a separate file to make
it useful for NTP. Replace some constants with parameters and generalize
the code to work with full NTP samples (including root dispersion/delay,
stratum, and leap).

For refclocks it should give the same results as before.
This commit is contained in:
Miroslav Lichvar 2018-08-03 15:15:36 +02:00
parent 6bef8aa0e9
commit c498c21fad
4 changed files with 538 additions and 375 deletions

View file

@ -36,7 +36,7 @@ DESTDIR=
HASH_OBJ = @HASH_OBJ@
OBJS = array.o cmdparse.o conf.o local.o logging.o main.o memory.o \
reference.o regress.o rtc.o sched.o sources.o sourcestats.o stubs.o \
reference.o regress.o rtc.o samplefilt.o sched.o sources.o sourcestats.o stubs.o \
smooth.o sys.o sys_null.o tempcomp.o util.o $(HASH_OBJ)
EXTRA_OBJS=@EXTRA_OBJECTS@

View file

@ -37,6 +37,7 @@
#include "sources.h"
#include "logging.h"
#include "regress.h"
#include "samplefilt.h"
#include "sched.h"
/* list of refclock drivers */
@ -81,13 +82,13 @@ struct RCL_Instance_Record {
int max_lock_age;
int stratum;
int tai;
struct MedianFilter filter;
uint32_t ref_id;
uint32_t lock_ref;
double offset;
double delay;
double precision;
double pulse_width;
SPF_Instance filter;
SCH_TimeoutID timeout_id;
SRC_Instance source;
};
@ -105,18 +106,6 @@ static void slew_samples(struct timespec *raw, struct timespec *cooked, double d
static void add_dispersion(double dispersion, void *anything);
static void log_sample(RCL_Instance instance, struct timespec *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion);
static void filter_init(struct MedianFilter *filter, int length, double max_dispersion);
static void filter_fini(struct MedianFilter *filter);
static void filter_reset(struct MedianFilter *filter);
static double filter_get_avg_sample_dispersion(struct MedianFilter *filter);
static void filter_add_sample(struct MedianFilter *filter, struct timespec *sample_time, double offset, double dispersion);
static int filter_get_last_sample(struct MedianFilter *filter, struct timespec *sample_time, double *offset, double *dispersion);
static int filter_get_samples(struct MedianFilter *filter);
static int filter_select_samples(struct MedianFilter *filter);
static int filter_get_sample(struct MedianFilter *filter, struct timespec *sample_time, double *offset, double *dispersion);
static void filter_slew_samples(struct MedianFilter *filter, struct timespec *when, double dfreq, double doffset);
static void filter_add_dispersion(struct MedianFilter *filter, double dispersion);
static RCL_Instance
get_refclock(unsigned int index)
{
@ -151,7 +140,7 @@ RCL_Finalise(void)
if (inst->driver->fini)
inst->driver->fini(inst);
filter_fini(&inst->filter);
SPF_DestroyInstance(inst->filter);
Free(inst->driver_parameter);
SRC_DestroyInstance(inst->source);
Free(inst);
@ -258,7 +247,11 @@ RCL_AddRefclock(RefclockParameters *params)
if (inst->driver->init && !inst->driver->init(inst))
LOG_FATAL("refclock %s initialisation failed", params->driver_name);
filter_init(&inst->filter, params->filter_length, params->max_dispersion);
/* Require the filter to have at least 4 samples to produce a filtered
sample, or be full for shorter lengths, and combine 60% of samples
closest to the median */
inst->filter = SPF_CreateInstance(MIN(params->filter_length, 4), params->filter_length,
params->max_dispersion, 0.6);
inst->source = SRC_CreateNewInstance(inst->ref_id, SRC_REFCLOCK, params->sel_options, NULL,
params->min_samples, params->max_samples, 0.0, 0.0);
@ -379,6 +372,28 @@ convert_tai_offset(struct timespec *sample_time, double *offset)
return 1;
}
static void
accumulate_sample(RCL_Instance instance, struct timespec *sample_time, double offset, double dispersion)
{
NTP_Sample sample;
sample.time = *sample_time;
sample.offset = offset;
sample.peer_delay = instance->delay;
sample.root_delay = instance->delay;
sample.peer_dispersion = dispersion;
sample.root_dispersion = dispersion;
sample.leap = instance->leap_status;
/* Handle special case when PPS is used with the local reference */
if (instance->pps_active && instance->lock_ref == -1)
sample.stratum = pps_stratum(instance, &sample.time);
else
sample.stratum = instance->stratum;
SPF_AccumulateSample(instance->filter, &sample);
}
int
RCL_AddSample(RCL_Instance instance, struct timespec *sample_time, double offset, int leap)
{
@ -413,7 +428,7 @@ RCL_AddSample(RCL_Instance instance, struct timespec *sample_time, double offset
return 0;
}
filter_add_sample(&instance->filter, &cooked_time, offset - correction + instance->offset, dispersion);
accumulate_sample(instance, &cooked_time, offset - correction + instance->offset, dispersion);
instance->pps_active = 0;
log_sample(instance, &cooked_time, 0, 0, offset, offset - correction + instance->offset, dispersion);
@ -489,20 +504,19 @@ RCL_AddCookedPulse(RCL_Instance instance, struct timespec *cooked_time,
if (instance->lock_ref != -1) {
RCL_Instance lock_refclock;
struct timespec ref_sample_time;
double sample_diff, ref_offset, ref_dispersion, shift;
NTP_Sample ref_sample;
double sample_diff, shift;
lock_refclock = get_refclock(instance->lock_ref);
if (!filter_get_last_sample(&lock_refclock->filter,
&ref_sample_time, &ref_offset, &ref_dispersion)) {
if (!SPF_GetLastSample(lock_refclock->filter, &ref_sample)) {
DEBUG_LOG("refclock pulse ignored no ref sample");
return 0;
}
ref_dispersion += filter_get_avg_sample_dispersion(&lock_refclock->filter);
ref_sample.root_dispersion += SPF_GetAvgSampleDispersion(lock_refclock->filter);
sample_diff = UTI_DiffTimespecsToDouble(cooked_time, &ref_sample_time);
sample_diff = UTI_DiffTimespecsToDouble(cooked_time, &ref_sample.time);
if (fabs(sample_diff) >= (double)instance->max_lock_age / rate) {
DEBUG_LOG("refclock pulse ignored samplediff=%.9f",
sample_diff);
@ -510,26 +524,27 @@ RCL_AddCookedPulse(RCL_Instance instance, struct timespec *cooked_time,
}
/* Align the offset to the reference sample */
if ((ref_offset - offset) >= 0.0)
shift = (long)((ref_offset - offset) * rate + 0.5) / (double)rate;
if ((ref_sample.offset - offset) >= 0.0)
shift = (long)((ref_sample.offset - offset) * rate + 0.5) / (double)rate;
else
shift = (long)((ref_offset - offset) * rate - 0.5) / (double)rate;
shift = (long)((ref_sample.offset - offset) * rate - 0.5) / (double)rate;
offset += shift;
if (fabs(ref_offset - offset) + ref_dispersion + dispersion >= 0.2 / rate) {
if (fabs(ref_sample.offset - offset) +
ref_sample.root_dispersion + dispersion >= 0.2 / rate) {
DEBUG_LOG("refclock pulse ignored offdiff=%.9f refdisp=%.9f disp=%.9f",
ref_offset - offset, ref_dispersion, dispersion);
ref_sample.offset - offset, ref_sample.root_dispersion, dispersion);
return 0;
}
if (!check_pulse_edge(instance, ref_offset - offset, 0.0))
if (!check_pulse_edge(instance, ref_sample.offset - offset, 0.0))
return 0;
leap = lock_refclock->leap_status;
DEBUG_LOG("refclock pulse offset=%.9f offdiff=%.9f samplediff=%.9f",
offset, ref_offset - offset, sample_diff);
offset, ref_sample.offset - offset, sample_diff);
} else {
struct timespec ref_time;
int is_synchronised, stratum;
@ -547,7 +562,7 @@ RCL_AddCookedPulse(RCL_Instance instance, struct timespec *cooked_time,
DEBUG_LOG("refclock pulse ignored offset=%.9f sync=%d dist=%.9f",
offset, leap != LEAP_Unsynchronised, distance);
/* Drop also all stored samples */
filter_reset(&instance->filter);
SPF_DropSamples(instance->filter);
return 0;
}
@ -555,7 +570,7 @@ RCL_AddCookedPulse(RCL_Instance instance, struct timespec *cooked_time,
return 0;
}
filter_add_sample(&instance->filter, cooked_time, offset, dispersion);
accumulate_sample(instance, cooked_time, offset, dispersion);
instance->leap_status = leap;
instance->pps_active = 1;
@ -584,17 +599,17 @@ RCL_GetDriverPoll(RCL_Instance instance)
static int
valid_sample_time(RCL_Instance instance, struct timespec *sample_time)
{
struct timespec now, last_sample_time;
double diff, last_offset, last_dispersion;
NTP_Sample last_sample;
struct timespec now;
double diff;
LCL_ReadCookedTime(&now, NULL);
diff = UTI_DiffTimespecsToDouble(&now, sample_time);
if (diff < 0.0 || diff > UTI_Log2ToDouble(instance->poll + 1) ||
(filter_get_samples(&instance->filter) > 0 &&
filter_get_last_sample(&instance->filter, &last_sample_time,
&last_offset, &last_dispersion) &&
UTI_CompareTimespecs(&last_sample_time, sample_time) >= 0)) {
(SPF_GetNumberOfSamples(instance->filter) > 0 &&
SPF_GetLastSample(instance->filter, &last_sample) &&
UTI_CompareTimespecs(&last_sample.time, sample_time) >= 0)) {
DEBUG_LOG("%s refclock sample time %s not valid age=%.6f",
UTI_RefidToString(instance->ref_id),
UTI_TimespecToString(sample_time), diff);
@ -638,6 +653,7 @@ pps_stratum(RCL_Instance instance, struct timespec *ts)
static void
poll_timeout(void *arg)
{
NTP_Sample sample;
int poll;
RCL_Instance inst = (RCL_Instance)arg;
@ -651,25 +667,9 @@ poll_timeout(void *arg)
}
if (!(inst->driver->poll && inst->driver_polled < (1 << (inst->poll - inst->driver_poll)))) {
NTP_Sample sample;
int sample_ok;
sample_ok = filter_get_sample(&inst->filter, &sample.time,
&sample.offset, &sample.peer_dispersion);
inst->driver_polled = 0;
if (sample_ok) {
sample.peer_delay = inst->delay;
sample.root_delay = sample.peer_delay;
sample.root_dispersion = sample.peer_dispersion;
sample.leap = inst->leap_status;
if (inst->pps_active && inst->lock_ref == -1)
/* Handle special case when PPS is used with local stratum */
sample.stratum = pps_stratum(inst, &sample.time);
else
sample.stratum = inst->stratum;
if (SPF_GetFilteredSample(inst->filter, &sample)) {
SRC_UpdateReachability(inst->source, 1);
SRC_AccumulateSample(inst->source, &sample);
SRC_SelectSource(inst->source);
@ -691,9 +691,9 @@ slew_samples(struct timespec *raw, struct timespec *cooked, double dfreq,
for (i = 0; i < ARR_GetSize(refclocks); i++) {
if (change_type == LCL_ChangeUnknownStep)
filter_reset(&get_refclock(i)->filter);
SPF_DropSamples(get_refclock(i)->filter);
else
filter_slew_samples(&get_refclock(i)->filter, cooked, dfreq, doffset);
SPF_SlewSamples(get_refclock(i)->filter, cooked, dfreq, doffset);
}
}
@ -703,7 +703,7 @@ add_dispersion(double dispersion, void *anything)
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++)
filter_add_dispersion(&get_refclock(i)->filter, dispersion);
SPF_AddDispersion(get_refclock(i)->filter, dispersion);
}
static void
@ -735,320 +735,3 @@ log_sample(RCL_Instance instance, struct timespec *sample_time, int filtered, in
dispersion);
}
}
static void
filter_init(struct MedianFilter *filter, int length, double max_dispersion)
{
if (length < 1)
length = 1;
filter->length = length;
filter->index = -1;
filter->used = 0;
filter->last = -1;
/* set first estimate to system precision */
filter->avg_var_n = 0;
filter->avg_var = LCL_GetSysPrecisionAsQuantum() * LCL_GetSysPrecisionAsQuantum();
filter->max_var = max_dispersion * max_dispersion;
filter->samples = MallocArray(struct FilterSample, filter->length);
filter->selected = MallocArray(int, filter->length);
filter->x_data = MallocArray(double, filter->length);
filter->y_data = MallocArray(double, filter->length);
filter->w_data = MallocArray(double, filter->length);
}
static void
filter_fini(struct MedianFilter *filter)
{
Free(filter->samples);
Free(filter->selected);
Free(filter->x_data);
Free(filter->y_data);
Free(filter->w_data);
}
static void
filter_reset(struct MedianFilter *filter)
{
filter->index = -1;
filter->used = 0;
}
static double
filter_get_avg_sample_dispersion(struct MedianFilter *filter)
{
return sqrt(filter->avg_var);
}
static void
filter_add_sample(struct MedianFilter *filter, struct timespec *sample_time, double offset, double dispersion)
{
filter->index++;
filter->index %= filter->length;
filter->last = filter->index;
if (filter->used < filter->length)
filter->used++;
filter->samples[filter->index].sample_time = *sample_time;
filter->samples[filter->index].offset = offset;
filter->samples[filter->index].dispersion = dispersion;
DEBUG_LOG("filter sample %d t=%s offset=%.9f dispersion=%.9f",
filter->index, UTI_TimespecToString(sample_time), offset, dispersion);
}
static int
filter_get_last_sample(struct MedianFilter *filter, struct timespec *sample_time, double *offset, double *dispersion)
{
if (filter->last < 0)
return 0;
*sample_time = filter->samples[filter->last].sample_time;
*offset = filter->samples[filter->last].offset;
*dispersion = filter->samples[filter->last].dispersion;
return 1;
}
static int
filter_get_samples(struct MedianFilter *filter)
{
return filter->used;
}
static const struct FilterSample *tmp_sorted_array;
static int
sample_compare(const void *a, const void *b)
{
const struct FilterSample *s1, *s2;
s1 = &tmp_sorted_array[*(int *)a];
s2 = &tmp_sorted_array[*(int *)b];
if (s1->offset < s2->offset)
return -1;
else if (s1->offset > s2->offset)
return 1;
return 0;
}
int
filter_select_samples(struct MedianFilter *filter)
{
int i, j, k, o, from, to, *selected;
double min_dispersion;
if (filter->used < 1)
return 0;
/* for lengths below 4 require full filter,
for 4 and above require at least 4 samples */
if ((filter->length < 4 && filter->used != filter->length) ||
(filter->length >= 4 && filter->used < 4))
return 0;
selected = filter->selected;
if (filter->used > 4) {
/* select samples with dispersion better than 1.5 * minimum */
for (i = 1, min_dispersion = filter->samples[0].dispersion; i < filter->used; i++) {
if (min_dispersion > filter->samples[i].dispersion)
min_dispersion = filter->samples[i].dispersion;
}
for (i = j = 0; i < filter->used; i++) {
if (filter->samples[i].dispersion <= 1.5 * min_dispersion)
selected[j++] = i;
}
} else {
j = 0;
}
if (j < 4) {
/* select all samples */
for (j = 0; j < filter->used; j++)
selected[j] = j;
}
/* and sort their indices by offset */
tmp_sorted_array = filter->samples;
qsort(selected, j, sizeof (int), sample_compare);
/* select 60 percent of the samples closest to the median */
if (j > 2) {
from = j / 5;
if (from < 1)
from = 1;
to = j - from;
} else {
from = 0;
to = j;
}
/* mark unused samples and sort the rest from oldest to newest */
o = filter->used - filter->index - 1;
for (i = 0; i < from; i++)
selected[i] = -1;
for (; i < to; i++)
selected[i] = (selected[i] + o) % filter->used;
for (; i < filter->used; i++)
selected[i] = -1;
for (i = from; i < to; i++) {
j = selected[i];
selected[i] = -1;
while (j != -1 && selected[j] != j) {
k = selected[j];
selected[j] = j;
j = k;
}
}
for (i = j = 0, k = -1; i < filter->used; i++) {
if (selected[i] != -1)
selected[j++] = (selected[i] + filter->used - o) % filter->used;
}
return j;
}
static int
filter_get_sample(struct MedianFilter *filter, struct timespec *sample_time, double *offset, double *dispersion)
{
struct FilterSample *s, *ls;
int i, n, dof;
double x, y, d, e, var, prev_avg_var;
n = filter_select_samples(filter);
if (n < 1)
return 0;
ls = &filter->samples[filter->selected[n - 1]];
/* prepare data */
for (i = 0; i < n; i++) {
s = &filter->samples[filter->selected[i]];
filter->x_data[i] = UTI_DiffTimespecsToDouble(&s->sample_time, &ls->sample_time);
filter->y_data[i] = s->offset;
filter->w_data[i] = s->dispersion;
}
/* mean offset, sample time and sample dispersion */
for (i = 0, x = y = e = 0.0; i < n; i++) {
x += filter->x_data[i];
y += filter->y_data[i];
e += filter->w_data[i];
}
x /= n;
y /= n;
e /= n;
if (n >= 4) {
double b0, b1, s2, sb0, sb1;
/* set y axis to the mean sample time */
for (i = 0; i < n; i++)
filter->x_data[i] -= x;
/* make a linear fit and use the estimated standard deviation of intercept
as dispersion */
RGR_WeightedRegression(filter->x_data, filter->y_data, filter->w_data, n,
&b0, &b1, &s2, &sb0, &sb1);
var = s2;
d = sb0;
dof = n - 2;
} else if (n >= 2) {
for (i = 0, d = 0.0; i < n; i++)
d += (filter->y_data[i] - y) * (filter->y_data[i] - y);
var = d / (n - 1);
d = sqrt(var);
dof = n - 1;
} else {
var = filter->avg_var;
d = sqrt(var);
dof = 1;
}
/* avoid having zero dispersion */
if (var < 1e-20) {
var = 1e-20;
d = sqrt(var);
}
/* drop the sample if variance is larger than allowed maximum */
if (filter->max_var > 0.0 && var > filter->max_var) {
DEBUG_LOG("filter dispersion too large disp=%.9f max=%.9f",
sqrt(var), sqrt(filter->max_var));
return 0;
}
prev_avg_var = filter->avg_var;
/* update exponential moving average of the variance */
if (filter->avg_var_n > 50) {
filter->avg_var += dof / (dof + 50.0) * (var - filter->avg_var);
} else {
filter->avg_var = (filter->avg_var * filter->avg_var_n + var * dof) /
(dof + filter->avg_var_n);
if (filter->avg_var_n == 0)
prev_avg_var = filter->avg_var;
filter->avg_var_n += dof;
}
/* reduce noise in sourcestats weights by using the long-term average
instead of the estimated variance if it's not significantly lower */
if (var * dof / RGR_GetChi2Coef(dof) < prev_avg_var)
d = sqrt(filter->avg_var) * d / sqrt(var);
if (d < e)
d = e;
UTI_AddDoubleToTimespec(&ls->sample_time, x, sample_time);
*offset = y;
*dispersion = d;
filter_reset(filter);
return 1;
}
static void
filter_slew_samples(struct MedianFilter *filter, struct timespec *when, double dfreq, double doffset)
{
int i, first, last;
double delta_time;
struct timespec *sample;
if (filter->last < 0)
return;
/* always slew the last sample as it may be needed by PPS refclocks */
if (filter->used > 0) {
first = 0;
last = filter->used - 1;
} else {
first = last = filter->last;
}
for (i = first; i <= last; i++) {
sample = &filter->samples[i].sample_time;
UTI_AdjustTimespec(sample, when, sample, &delta_time, dfreq, doffset);
filter->samples[i].offset -= delta_time;
}
}
static void
filter_add_dispersion(struct MedianFilter *filter, double dispersion)
{
int i;
for (i = 0; i < filter->used; i++) {
filter->samples[i].dispersion += dispersion;
}
}

431
samplefilt.c Normal file
View file

@ -0,0 +1,431 @@
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Miroslav Lichvar 2009-2011, 2014, 2016, 2018
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Routines implementing a median sample filter.
*/
#include "config.h"
#include "local.h"
#include "logging.h"
#include "memory.h"
#include "regress.h"
#include "samplefilt.h"
#include "util.h"
#define MIN_SAMPLES 1
#define MAX_SAMPLES 256
struct SPF_Instance_Record {
int min_samples;
int max_samples;
int index;
int used;
int last;
int avg_var_n;
double avg_var;
double max_var;
double combine_ratio;
NTP_Sample *samples;
int *selected;
double *x_data;
double *y_data;
double *w_data;
};
/* ================================================== */
SPF_Instance
SPF_CreateInstance(int min_samples, int max_samples, double max_dispersion, double combine_ratio)
{
SPF_Instance filter;
filter = MallocNew(struct SPF_Instance_Record);
min_samples = CLAMP(MIN_SAMPLES, min_samples, MAX_SAMPLES);
max_samples = CLAMP(MIN_SAMPLES, max_samples, MAX_SAMPLES);
max_samples = MAX(min_samples, max_samples);
combine_ratio = CLAMP(0.0, combine_ratio, 1.0);
filter->min_samples = min_samples;
filter->max_samples = max_samples;
filter->index = -1;
filter->used = 0;
filter->last = -1;
/* Set the first estimate to the system precision */
filter->avg_var_n = 0;
filter->avg_var = LCL_GetSysPrecisionAsQuantum() * LCL_GetSysPrecisionAsQuantum();
filter->max_var = max_dispersion * max_dispersion;
filter->combine_ratio = combine_ratio;
filter->samples = MallocArray(NTP_Sample, filter->max_samples);
filter->selected = MallocArray(int, filter->max_samples);
filter->x_data = MallocArray(double, filter->max_samples);
filter->y_data = MallocArray(double, filter->max_samples);
filter->w_data = MallocArray(double, filter->max_samples);
return filter;
}
/* ================================================== */
void
SPF_DestroyInstance(SPF_Instance filter)
{
Free(filter->samples);
Free(filter->selected);
Free(filter->x_data);
Free(filter->y_data);
Free(filter->w_data);
Free(filter);
}
/* ================================================== */
void
SPF_AccumulateSample(SPF_Instance filter, NTP_Sample *sample)
{
filter->index++;
filter->index %= filter->max_samples;
filter->last = filter->index;
if (filter->used < filter->max_samples)
filter->used++;
filter->samples[filter->index] = *sample;
DEBUG_LOG("filter sample %d t=%s offset=%.9f peer_disp=%.9f",
filter->index, UTI_TimespecToString(&sample->time),
sample->offset, sample->peer_dispersion);
}
/* ================================================== */
int
SPF_GetLastSample(SPF_Instance filter, NTP_Sample *sample)
{
if (filter->last < 0)
return 0;
*sample = filter->samples[filter->last];
return 1;
}
/* ================================================== */
int
SPF_GetNumberOfSamples(SPF_Instance filter)
{
return filter->used;
}
/* ================================================== */
double
SPF_GetAvgSampleDispersion(SPF_Instance filter)
{
return sqrt(filter->avg_var);
}
/* ================================================== */
void
SPF_DropSamples(SPF_Instance filter)
{
filter->index = -1;
filter->used = 0;
}
/* ================================================== */
static const NTP_Sample *tmp_sort_samples;
static int
compare_samples(const void *a, const void *b)
{
const NTP_Sample *s1, *s2;
s1 = &tmp_sort_samples[*(int *)a];
s2 = &tmp_sort_samples[*(int *)b];
if (s1->offset < s2->offset)
return -1;
else if (s1->offset > s2->offset)
return 1;
return 0;
}
/* ================================================== */
static int
select_samples(SPF_Instance filter)
{
int i, j, k, o, from, to, *selected;
double min_dispersion;
if (filter->used < filter->min_samples)
return 0;
selected = filter->selected;
/* With 4 or more samples, select those that have peer dispersion smaller
than 1.5x of the minimum dispersion */
if (filter->used > 4) {
for (i = 1, min_dispersion = filter->samples[0].peer_dispersion; i < filter->used; i++) {
if (min_dispersion > filter->samples[i].peer_dispersion)
min_dispersion = filter->samples[i].peer_dispersion;
}
for (i = j = 0; i < filter->used; i++) {
if (filter->samples[i].peer_dispersion <= 1.5 * min_dispersion)
selected[j++] = i;
}
} else {
j = 0;
}
if (j < 4) {
/* Select all samples */
for (j = 0; j < filter->used; j++)
selected[j] = j;
}
/* And sort their indices by offset */
tmp_sort_samples = filter->samples;
qsort(selected, j, sizeof (int), compare_samples);
/* Select samples closest to the median */
if (j > 2) {
from = j * (1.0 - filter->combine_ratio) / 2.0;
from = CLAMP(1, from, (j - 1) / 2);
} else {
from = 0;
}
to = j - from;
/* Mark unused samples and sort the rest by their time */
o = filter->used - filter->index - 1;
for (i = 0; i < from; i++)
selected[i] = -1;
for (; i < to; i++)
selected[i] = (selected[i] + o) % filter->used;
for (; i < filter->used; i++)
selected[i] = -1;
for (i = from; i < to; i++) {
j = selected[i];
selected[i] = -1;
while (j != -1 && selected[j] != j) {
k = selected[j];
selected[j] = j;
j = k;
}
}
for (i = j = 0, k = -1; i < filter->used; i++) {
if (selected[i] != -1)
selected[j++] = (selected[i] + filter->used - o) % filter->used;
}
assert(j > 0 && j <= filter->max_samples);
return j;
}
/* ================================================== */
static int
combine_selected_samples(SPF_Instance filter, int n, NTP_Sample *result)
{
double mean_peer_dispersion, mean_root_dispersion, mean_peer_delay, mean_root_delay;
double mean_x, mean_y, disp, var, prev_avg_var;
NTP_Sample *sample, *last_sample;
int i, dof;
last_sample = &filter->samples[filter->selected[n - 1]];
/* Prepare data */
for (i = 0; i < n; i++) {
sample = &filter->samples[filter->selected[i]];
filter->x_data[i] = UTI_DiffTimespecsToDouble(&sample->time, &last_sample->time);
filter->y_data[i] = sample->offset;
filter->w_data[i] = sample->peer_dispersion;
}
/* Calculate mean offset and interval since the last sample */
for (i = 0, mean_x = mean_y = 0.0; i < n; i++) {
mean_x += filter->x_data[i];
mean_y += filter->y_data[i];
}
mean_x /= n;
mean_y /= n;
if (n >= 4) {
double b0, b1, s2, sb0, sb1;
/* Set y axis to the mean sample time */
for (i = 0; i < n; i++)
filter->x_data[i] -= mean_x;
/* Make a linear fit and use the estimated standard deviation of the
intercept as dispersion */
RGR_WeightedRegression(filter->x_data, filter->y_data, filter->w_data, n,
&b0, &b1, &s2, &sb0, &sb1);
var = s2;
disp = sb0;
dof = n - 2;
} else if (n >= 2) {
for (i = 0, disp = 0.0; i < n; i++)
disp += (filter->y_data[i] - mean_y) * (filter->y_data[i] - mean_y);
var = disp / (n - 1);
disp = sqrt(var);
dof = n - 1;
} else {
var = filter->avg_var;
disp = sqrt(var);
dof = 1;
}
/* Avoid working with zero dispersion */
if (var < 1e-20) {
var = 1e-20;
disp = sqrt(var);
}
/* Drop the sample if the variance is larger than the maximum */
if (filter->max_var > 0.0 && var > filter->max_var) {
DEBUG_LOG("filter dispersion too large disp=%.9f max=%.9f",
sqrt(var), sqrt(filter->max_var));
return 0;
}
prev_avg_var = filter->avg_var;
/* Update the exponential moving average of the variance */
if (filter->avg_var_n > 50) {
filter->avg_var += dof / (dof + 50.0) * (var - filter->avg_var);
} else {
filter->avg_var = (filter->avg_var * filter->avg_var_n + var * dof) /
(dof + filter->avg_var_n);
if (filter->avg_var_n == 0)
prev_avg_var = filter->avg_var;
filter->avg_var_n += dof;
}
/* Use the long-term average of variance instead of the estimated value
unless it is significantly smaller in order to reduce the noise in
sourcestats weights */
if (var * dof / RGR_GetChi2Coef(dof) < prev_avg_var)
disp = sqrt(filter->avg_var) * disp / sqrt(var);
mean_peer_dispersion = mean_root_dispersion = mean_peer_delay = mean_root_delay = 0.0;
for (i = 0; i < n; i++) {
sample = &filter->samples[filter->selected[i]];
mean_peer_dispersion += sample->peer_dispersion;
mean_root_dispersion += sample->root_dispersion;
mean_peer_delay += sample->peer_delay;
mean_root_delay += sample->root_delay;
}
mean_peer_dispersion /= n;
mean_root_dispersion /= n;
mean_peer_delay /= n;
mean_root_delay /= n;
UTI_AddDoubleToTimespec(&last_sample->time, mean_x, &result->time);
result->offset = mean_y;
result->peer_dispersion = MAX(disp, mean_peer_dispersion);
result->root_dispersion = MAX(disp, mean_root_dispersion);
result->peer_delay = mean_peer_delay;
result->root_delay = mean_root_delay;
result->stratum = last_sample->stratum;
result->leap = last_sample->leap;
return 1;
}
/* ================================================== */
int
SPF_GetFilteredSample(SPF_Instance filter, NTP_Sample *sample)
{
int n;
n = select_samples(filter);
if (n < 1)
return 0;
if (!combine_selected_samples(filter, n, sample))
return 0;
SPF_DropSamples(filter);
return 1;
}
/* ================================================== */
void
SPF_SlewSamples(SPF_Instance filter, struct timespec *when, double dfreq, double doffset)
{
int i, first, last;
double delta_time;
if (filter->last < 0)
return;
/* Always slew the last sample as it may be returned even if no new
samples were accumulated */
if (filter->used > 0) {
first = 0;
last = filter->used - 1;
} else {
first = last = filter->last;
}
for (i = first; i <= last; i++) {
UTI_AdjustTimespec(&filter->samples[i].time, when, &filter->samples[i].time,
&delta_time, dfreq, doffset);
filter->samples[i].offset -= delta_time;
}
}
/* ================================================== */
void
SPF_AddDispersion(SPF_Instance filter, double dispersion)
{
int i;
for (i = 0; i < filter->used; i++) {
filter->samples[i].peer_dispersion += dispersion;
filter->samples[i].root_dispersion += dispersion;
}
}

49
samplefilt.h Normal file
View file

@ -0,0 +1,49 @@
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Miroslav Lichvar 2018
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Header file for sample filter.
*/
#ifndef GOT_SAMPLEFILT_H
#define GOT_SAMPLEFILT_H
#include "ntp.h"
typedef struct SPF_Instance_Record *SPF_Instance;
extern SPF_Instance SPF_CreateInstance(int min_samples, int max_samples,
double max_dispersion, double combine_ratio);
extern void SPF_DestroyInstance(SPF_Instance filter);
extern void SPF_AccumulateSample(SPF_Instance filter, NTP_Sample *sample);
extern int SPF_GetLastSample(SPF_Instance filter, NTP_Sample *sample);
extern int SPF_GetNumberOfSamples(SPF_Instance filter);
extern double SPF_GetAvgSampleDispersion(SPF_Instance filter);
extern void SPF_DropSamples(SPF_Instance filter);
extern int SPF_GetFilteredSample(SPF_Instance filter, NTP_Sample *sample);
extern void SPF_SlewSamples(SPF_Instance filter, struct timespec *when,
double dfreq, double doffset);
extern void SPF_AddDispersion(SPF_Instance filter, double dispersion);
#endif