sys_netbsd: use timex driver

Remove the driver functions based on adjtime() and switch to the new
timex driver, which is based on ntp_adjtime(). This allows chronyd to
control the kernel frequency, adjust the offset with sub-microsecond
accuracy, and set the kernel leap and sync status. A drawback is that
the maximum slew rate is now limited by the 500 ppm maximum frequency
offset, while adjtime() on NetBSD slewed by up to 5000 ppm.
This commit is contained in:
Miroslav Lichvar 2015-09-15 15:44:34 +02:00
parent 1b2510e4b2
commit d2d82e2e5f
2 changed files with 5 additions and 281 deletions

3
configure vendored
View file

@ -419,8 +419,7 @@ case $SYSTEM in
echo "Configuring for $SYSTEM (using SunOS driver)" echo "Configuring for $SYSTEM (using SunOS driver)"
;; ;;
NetBSD-* ) NetBSD-* )
EXTRA_OBJECTS="sys_netbsd.o" EXTRA_OBJECTS="sys_generic.o sys_netbsd.o sys_timex.o"
EXTRA_LIBS="-lkvm"
try_clockctl=1 try_clockctl=1
add_def NETBSD add_def NETBSD
echo "Configuring for $SYSTEM" echo "Configuring for $SYSTEM"

View file

@ -27,291 +27,18 @@
#include "config.h" #include "config.h"
#ifdef NETBSD #include "sysincl.h"
#include <kvm.h>
#include <nlist.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/time.h>
#include <stdio.h>
#include <signal.h>
#include "sys_netbsd.h" #include "sys_netbsd.h"
#include "localp.h" #include "sys_timex.h"
#include "logging.h" #include "logging.h"
#include "util.h"
/* ================================================== */
/* This register contains the number of seconds by which the local
clock was estimated to be fast of reference time at the epoch when
gettimeofday() returned T0 */
static double offset_register;
/* This register contains the epoch to which the offset is referenced */
static struct timeval T0;
/* This register contains the current estimate of the system
frequency, in absolute (NOT ppm) */
static double current_freq;
/* This register contains the number of seconds of adjustment that
were passed to adjtime last time it was called. */
static double adjustment_requested;
/* Kernel parameters to calculate adjtime error. */
static int kern_tickadj;
static long kern_bigadj;
/* ================================================== */
static void
clock_initialise(void)
{
struct timeval newadj, oldadj;
offset_register = 0.0;
adjustment_requested = 0.0;
current_freq = 0.0;
if (gettimeofday(&T0, NULL) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "gettimeofday() failed");
}
newadj.tv_sec = 0;
newadj.tv_usec = 0;
if (adjtime(&newadj, &oldadj) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "adjtime() failed");
}
}
/* ================================================== */
static void
clock_finalise(void)
{
/* Nothing to do yet */
}
/* ================================================== */
static void
start_adjust(void)
{
struct timeval newadj, oldadj;
struct timeval T1;
double elapsed, accrued_error;
double adjust_required;
struct timeval exact_newadj;
long delta, tickdelta;
double rounding_error;
double old_adjust_remaining;
/* Determine the amount of error built up since the last adjustment */
if (gettimeofday(&T1, NULL) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "gettimeofday() failed");
}
UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0);
accrued_error = elapsed * current_freq;
adjust_required = - (accrued_error + offset_register);
UTI_DoubleToTimeval(adjust_required, &exact_newadj);
/* At this point, we need to round the required adjustment the
same way the kernel does. */
delta = exact_newadj.tv_sec * 1000000 + exact_newadj.tv_usec;
if (delta > kern_bigadj || delta < -kern_bigadj)
tickdelta = 10 * kern_tickadj;
else
tickdelta = kern_tickadj;
if (delta % tickdelta)
delta = delta / tickdelta * tickdelta;
newadj.tv_sec = 0;
newadj.tv_usec = delta;
UTI_NormaliseTimeval(&newadj);
/* Add rounding error back onto offset register. */
UTI_DiffTimevalsToDouble(&rounding_error, &newadj, &exact_newadj);
if (adjtime(&newadj, &oldadj) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "adjtime() failed");
}
UTI_TimevalToDouble(&oldadj, &old_adjust_remaining);
offset_register = rounding_error - old_adjust_remaining;
T0 = T1;
UTI_TimevalToDouble(&newadj, &adjustment_requested);
}
/* ================================================== */
static void
stop_adjust(void)
{
struct timeval T1;
struct timeval zeroadj, remadj;
double adjustment_remaining, adjustment_achieved;
double elapsed, elapsed_plus_adjust;
zeroadj.tv_sec = 0;
zeroadj.tv_usec = 0;
if (adjtime(&zeroadj, &remadj) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "adjtime() failed");
}
if (gettimeofday(&T1, NULL) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "gettimeofday() failed");
}
UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0);
UTI_TimevalToDouble(&remadj, &adjustment_remaining);
adjustment_achieved = adjustment_requested - adjustment_remaining;
elapsed_plus_adjust = elapsed - adjustment_achieved;
offset_register += current_freq * elapsed_plus_adjust - adjustment_remaining;
adjustment_requested = 0.0;
T0 = T1;
}
/* ================================================== */
/* Positive offset means system clock is fast of true time, therefore
slew backwards */
static void
accrue_offset(double offset, double corr_rate)
{
stop_adjust();
offset_register += offset;
start_adjust();
}
/* ================================================== */
/* Positive offset means system clock is fast of true time, therefore
step backwards */
static int
apply_step_offset(double offset)
{
struct timeval old_time, new_time, T1;
stop_adjust();
if (gettimeofday(&old_time, NULL) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "gettimeofday() failed");
}
UTI_AddDoubleToTimeval(&old_time, -offset, &new_time);
if (settimeofday(&new_time, NULL) < 0) {
DEBUG_LOG(LOGF_SysNetBSD, "settimeofday() failed");
return 0;
}
UTI_AddDoubleToTimeval(&T0, offset, &T1);
T0 = T1;
start_adjust();
return 1;
}
/* ================================================== */
static double
set_frequency(double new_freq_ppm)
{
stop_adjust();
current_freq = new_freq_ppm * 1.0e-6;
start_adjust();
return current_freq * 1.0e6;
}
/* ================================================== */
static double
read_frequency(void)
{
return current_freq * 1.0e6;
}
/* ================================================== */
static void
get_offset_correction(struct timeval *raw,
double *corr, double *err)
{
stop_adjust();
*corr = -offset_register;
start_adjust();
if (err)
*err = 0.0;
}
/* ================================================== */ /* ================================================== */
void void
SYS_NetBSD_Initialise(void) SYS_NetBSD_Initialise(void)
{ {
static struct nlist nl[] = { SYS_Timex_Initialise();
{"_tickadj"},
{"_bigadj"},
{NULL}
};
kvm_t *kt;
kt = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL);
if (!kt) {
LOG_FATAL(LOGF_SysNetBSD, "Cannot open kvm");
}
if (kvm_nlist(kt, nl) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "Cannot read kernel symbols");
}
if (kvm_read(kt, nl[0].n_value, (char *)(&kern_tickadj), sizeof(int)) < 0) {
LOG_FATAL(LOGF_SysNetBSD, "Cannot read from _tickadj");
}
if (kvm_read(kt, nl[1].n_value, (char *)(&kern_bigadj), sizeof(long)) < 0) {
/* kernel doesn't have the symbol, use one second instead */
kern_bigadj = 1000000;
}
kvm_close(kt);
clock_initialise();
lcl_RegisterSystemDrivers(read_frequency, set_frequency,
accrue_offset, apply_step_offset,
get_offset_correction,
NULL /* set_leap */,
NULL /* set_sync_status */);
} }
/* ================================================== */ /* ================================================== */
@ -319,7 +46,7 @@ SYS_NetBSD_Initialise(void)
void void
SYS_NetBSD_Finalise(void) SYS_NetBSD_Finalise(void)
{ {
clock_finalise(); SYS_Timex_Finalise();
} }
/* ================================================== */ /* ================================================== */
@ -348,5 +75,3 @@ SYS_NetBSD_DropRoot(uid_t uid, gid_t gid)
close(fd); close(fd);
} }
#endif #endif
#endif /* NETBSD */