diff --git a/configure b/configure index 420a177..896f30c 100755 --- a/configure +++ b/configure @@ -326,7 +326,7 @@ case $SYSTEM in esac ;; Linux* ) - EXTRA_OBJECTS="sys_linux.o wrap_adjtimex.o" + EXTRA_OBJECTS="sys_generic.o sys_linux.o wrap_adjtimex.o" try_linuxcaps=1 try_rtc=1 try_setsched=1 diff --git a/sys_linux.c b/sys_linux.c index 11f1c90..078604f 100644 --- a/sys_linux.c +++ b/sys_linux.c @@ -53,22 +53,19 @@ int LockAll = 0; #endif #include "localp.h" +#include "sys_generic.h" #include "sys_linux.h" -#include "sched.h" -#include "util.h" #include "conf.h" #include "logging.h" #include "wrap_adjtimex.h" -static long current_tick; - -/* This is the value of tick, in seconds, including the current vernier - frequency term */ -static double current_total_tick; - /* This is the uncompensated system tick value */ static int nominal_tick; +/* The maximum amount by which 'tick' can be biased away from 'nominal_tick' + (sys_adjtimex() in the kernel bounds this to 10%) */ +static int max_tick_bias; + /* This is the scaling required to go between absolute ppm and the scaled ppm used as an argument to adjtimex. Because chronyd is to an extent 'closed loop' maybe it doesn't matter if this is wrongly determined, UNLESS @@ -87,27 +84,12 @@ static double freq_scale; static int hz; static double dhz; /* And dbl prec version of same for arithmetic */ - -/* ================================================== */ - -/* Flag indicating whether adjtimex() returns the remaining time adjustment -or not. If not we have to read the outstanding adjustment by setting it to -zero, examining the return value and setting the outstanding adjustment back -again. */ - -static int have_readonly_adjtime; - -/* Flag indicating whether kernel supports PLL in nanosecond resolution. - If supported, it will be used instead of adjtime() for very small - adjustments. */ -static int have_nanopll; - /* Flag indicating whether adjtimex() can step the clock */ static int have_setoffset; -/* ================================================== */ - -static void handle_end_of_slew(void *anything); +/* The assumed rate at which the effective frequency and tick values are + updated in the kernel */ +static int tick_update_hz; /* ================================================== */ @@ -122,521 +104,6 @@ our_round(double x) { return y; } -/* ================================================== */ -/* Amount of outstanding offset to process */ -static double offset_register; - -/* Flag set true if an adjtime slew was started and still may be running */ -static int slow_slewing; - -/* Flag set true if a PLL nano slew was started and still may be running */ -static int nano_slewing; - -/* Flag set true if a fast slew (one done by altering tick) is being - run at the moment */ -static int fast_slewing; - -/* The amount by which the fast slew was supposed to slew the clock */ -static double fast_slew_wanted; - -/* The value programmed into the kernel's 'tick' variable whilst - slewing a large offset */ -static long slewing_tick; - -/* The timeval (raw) at which a fast slew was started. We need to - know this for two reasons. First, if we want to change the - frequency midway through, we will want to abort the slew and return - the unprocessed portion to the offset register to start again - later. Second, when the end of the slew expires, we need to know - precisely how long we have been slewing for, so that we can negate - the excess and slew it back the other way. */ -static struct timeval slew_start_tv; - -/* This is the ID returned to use by the scheduler's timeout handler. - We need this if we subsequently wish to abort a slew, because we will have to - dequeue the timeout */ -static SCH_TimeoutID slew_timeout_id; - -/* The adjustment that we apply to 'tick', in seconds, whilst applying - a fast slew */ -static double delta_total_tick; - -/* Maximum length of one fast slew */ -#define MAX_FASTSLEW_TIMEOUT (3600 * 24 * 7) - -/* Max amount of time that we wish to slew by using adjtime (or its - equivalent). If more than this is outstanding, we alter the value - of tick instead, for a set period. Set this according to the - amount of time that a dial-up clock might need to be shifted - assuming it is resync'ed about once per day. (TBC) */ -#define MAX_ADJUST_WITH_ADJTIME (0.2) - -/* Max amount of time that should be adjusted by kernel PLL */ -#define MAX_ADJUST_WITH_NANOPLL (0.5) - -/* The amount by which we alter 'tick' when doing a large slew */ -static int slew_delta_tick; - -/* The maximum amount by which 'tick' can be biased away from 'nominal_tick' - (sys_adjtimex() in the kernel bounds this to 10%) */ -static int max_tick_bias; - -/* The latest time at which system clock may still be slewed by previous - adjtime() call and maximum offset correction error it can cause */ -static struct timeval slow_slew_error_end; -static int slow_slew_error; - -/* Timeval at which the latest nano PLL adjustment was started and maximum - offset correction error it can cause */ -static struct timeval nano_slew_error_start; -static int nano_slew_error; - -/* The latest time at which 'tick' in kernel may be actually updated - and maximum offset correction error it can cause */ -static struct timeval fast_slew_error_end; -static double fast_slew_error; - -/* The rate at which frequency and tick values are updated in kernel. */ -static int tick_update_hz; - -#define MIN_PLL_TIME_CONSTANT 0 -#define MAX_PLL_TIME_CONSTANT 10 - -/* PLL time constant used when adjusting offset by PLL */ -static long pll_time_constant; - -/* Suggested offset correction rate (correction time * offset) */ -static double correction_rate; - -/* Kernel time constant shift */ -static int shift_pll; - -/* ================================================== */ -/* These routines are used to estimate maximum error in offset correction */ - -static void -update_slow_slew_error(int offset) -{ - struct timeval now, newend; - - if (offset == 0 && slow_slew_error == 0) - return; - - if (gettimeofday(&now, NULL) < 0) { - LOG_FATAL(LOGF_SysLinux, "gettimeofday() failed"); - } - - if (offset < 0) - offset = -offset; - - /* assume 500ppm rate and one sec delay, plus 10 percent for fast slewing */ - UTI_AddDoubleToTimeval(&now, (offset + 999) / 500 * 1.1, &newend); - - if (offset > 500) - offset = 500; - - if (slow_slew_error > offset) { - double previous_left; - - UTI_DiffTimevalsToDouble(&previous_left, &slow_slew_error_end, &now); - if (previous_left > 0.0) { - if (offset == 0) - newend = slow_slew_error_end; - offset = slow_slew_error; - } - } - - slow_slew_error = offset; - slow_slew_error_end = newend; -} - -static double -get_slow_slew_error(struct timeval *now) -{ - double left; - - if (slow_slew_error == 0) - return 0.0; - - UTI_DiffTimevalsToDouble(&left, &slow_slew_error_end, now); - return left > 0.0 ? slow_slew_error / 1e6 : 0.0; -} - -static void -update_nano_slew_error(long offset, int new) -{ - struct timeval now; - double ago; - - if (offset == 0 && nano_slew_error == 0) - return; - - /* maximum error in offset reported by adjtimex */ - offset /= (1 << (shift_pll + pll_time_constant)) - (new ? 0 : 1); - if (offset < 0) - offset = -offset; - - if (new || nano_slew_error_start.tv_sec > 0) { - if (gettimeofday(&now, NULL) < 0) { - LOG_FATAL(LOGF_SysLinux, "gettimeofday() failed"); - } - } - - /* When PLL offset is newly set, use the maximum of the old and new error. - Otherwise use the minimum, but only when the last update is older than - 1.1 seconds to be sure the previous adjustment is already gone. */ - if (!new) { - if (nano_slew_error > offset) { - if (nano_slew_error_start.tv_sec == 0) { - nano_slew_error = offset; - } else { - UTI_DiffTimevalsToDouble(&ago, &now, &nano_slew_error_start); - if (ago > 1.1) { - nano_slew_error_start.tv_sec = 0; - nano_slew_error = offset; - } - } - } - } else { - if (nano_slew_error < offset) - nano_slew_error = offset; - nano_slew_error_start = now; - } -} - -static double -get_nano_slew_error(void) -{ - if (nano_slew_error == 0) - return 0.0; - - return nano_slew_error / 1e9; -} - -static void -update_fast_slew_error(struct timeval *now) -{ - double max_tick; - - max_tick = current_total_tick + - (delta_total_tick > 0.0 ? delta_total_tick : 0.0); - - UTI_AddDoubleToTimeval(now, 1e6 * max_tick / nominal_tick / tick_update_hz, - &fast_slew_error_end); - fast_slew_error = fabs(1e6 * delta_total_tick / nominal_tick / tick_update_hz); -} - -static double -get_fast_slew_error(struct timeval *now) -{ - double left; - - if (fast_slew_error == 0.0) - return 0.0; - - UTI_DiffTimevalsToDouble(&left, &fast_slew_error_end, now); - if (left < -10.0) - fast_slew_error = 0.0; - - return left > 0.0 ? fast_slew_error : 0.0; -} - -/* ================================================== */ -/* Select PLL time constant according to the suggested correction rate. */ - -static long -get_pll_constant(double offset) -{ - long c; - double corr_time; - - if (offset < 1e-9) - return MIN_PLL_TIME_CONSTANT; - - corr_time = correction_rate / offset; - - for (c = MIN_PLL_TIME_CONSTANT; c < MAX_PLL_TIME_CONSTANT; c++) - if (corr_time < 1 << (c + 1 + shift_pll)) - break; - - return c; -} - -/* ================================================== */ -/* This routine stops a fast slew, determines how long the slew has - been running for, and consequently how much adjustment has actually - been applied. It can be used both when a slew finishes naturally - due to a timeout, and when a slew is being aborted. */ - -static void -stop_fast_slew(void) -{ - struct timeval T1; - double fast_slew_done; - double slew_duration; - - /* Should never get here unless this is true */ - assert(fast_slewing); - - /* Now set the thing off */ - if (gettimeofday(&T1, NULL) < 0) { - LOG_FATAL(LOGF_SysLinux, "gettimeofday() failed"); - } - - if (TMX_SetTick(current_tick) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - - fast_slewing = 0; - - UTI_DiffTimevalsToDouble(&slew_duration, &T1, &slew_start_tv); - - /* Compute the dispersion we have introduced by changing tick this - way. We handle this by adding dispersion to all statistics held - at higher levels in the system. */ - - update_fast_slew_error(&T1); - lcl_InvokeDispersionNotifyHandlers(fast_slew_error); - - fast_slew_done = delta_total_tick * slew_duration / - (current_total_tick + delta_total_tick); - - offset_register += (fast_slew_wanted + fast_slew_done); - -} - -/* ================================================== */ -/* This routine reschedules fast slew timeout according - to the current frequency and offset */ - -static void -adjust_fast_slew(double old_tick, double old_delta_tick) -{ - struct timeval tv, end_of_slew; - double fast_slew_done, slew_duration, dseconds; - - assert(fast_slewing); - - if (gettimeofday(&tv, NULL) < 0) { - LOG_FATAL(LOGF_SysLinux, "gettimeofday() failed"); - } - - UTI_DiffTimevalsToDouble(&slew_duration, &tv, &slew_start_tv); - - fast_slew_done = old_delta_tick * slew_duration / (old_tick + old_delta_tick); - offset_register += fast_slew_wanted + fast_slew_done; - - dseconds = -offset_register * (current_total_tick + delta_total_tick) / delta_total_tick; - - if (dseconds > MAX_FASTSLEW_TIMEOUT) - dseconds = MAX_FASTSLEW_TIMEOUT; - UTI_AddDoubleToTimeval(&tv, dseconds, &end_of_slew); - - slew_start_tv = tv; - fast_slew_wanted = offset_register; - offset_register = 0.0; - - SCH_RemoveTimeout(slew_timeout_id); - slew_timeout_id = SCH_AddTimeout(&end_of_slew, handle_end_of_slew, NULL); -} - -/* ================================================== */ -/* This routine is called to start a clock offset adjustment */ - -static void -initiate_slew(void) -{ - double dseconds; - long tick_adjust; - long offset; - struct timeval T0; - struct timeval end_of_slew; - - /* Don't want to get here if we already have an adjust on the go! */ - assert(!fast_slewing); - - if (offset_register == 0.0) { - return; - } - - /* Cancel any slewing that is running */ - if (slow_slewing) { - offset = 0; - if (TMX_ApplyOffset(&offset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - offset_register -= (double) offset / 1.0e6; - slow_slewing = 0; - update_slow_slew_error(0); - } else if (nano_slewing) { - if (TMX_GetPLLOffsetLeft(&offset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - offset_register -= (double) offset / 1.0e9; - update_nano_slew_error(offset, 0); - - offset = 0; - if (TMX_ApplyPLLOffset(offset, MIN_PLL_TIME_CONSTANT) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - nano_slewing = 0; - update_nano_slew_error(offset, 1); - } - - if (have_nanopll && fabs(offset_register) < MAX_ADJUST_WITH_NANOPLL) { - /* Use the PLL with fixed frequency to do the shift. Until the kernel has a - support for linear offset adjustments with programmable rate this is the - best we can do. */ - offset = 1.0e9 * -offset_register; - - /* First adjustment after accrue_offset() sets the PLL time constant */ - if (pll_time_constant < 0) { - pll_time_constant = get_pll_constant(fabs(offset_register)); - } - - assert(pll_time_constant >= MIN_PLL_TIME_CONSTANT && - pll_time_constant <= MAX_PLL_TIME_CONSTANT); - - if (TMX_ApplyPLLOffset(offset, pll_time_constant) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - offset_register = 0.0; /* Don't keep the sub-nanosecond leftover */ - nano_slewing = 1; - update_nano_slew_error(offset, 1); - } else if (fabs(offset_register) < MAX_ADJUST_WITH_ADJTIME) { - /* Use adjtime to do the shift */ - offset = our_round(1.0e6 * -offset_register); - - offset_register += offset / 1.0e6; - - if (offset != 0) { - if (TMX_ApplyOffset(&offset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - slow_slewing = 1; - update_slow_slew_error(offset); - } - } else { - - /* If the system clock has a high drift rate, the combination of - current_tick + slew_delta_tick could be outside the range that adjtimex - will accept. To prevent this, the tick adjustment that is used to slew - an error off the clock is clamped according to what tick_adjust is. - */ - - long min_allowed_tick, max_allowed_tick; - - min_allowed_tick = nominal_tick - max_tick_bias; - max_allowed_tick = nominal_tick + max_tick_bias; - - if (offset_register > 0) { - if (current_tick <= min_allowed_tick) { - return; - } - - slewing_tick = current_tick - slew_delta_tick; - if (slewing_tick < min_allowed_tick) { - slewing_tick = min_allowed_tick; - } - } else { - if (current_tick >= max_allowed_tick) { - return; - } - - slewing_tick = current_tick + slew_delta_tick; - if (slewing_tick > max_allowed_tick) { - slewing_tick = max_allowed_tick; - } - } - - tick_adjust = slewing_tick - current_tick; - - delta_total_tick = (double) tick_adjust / 1.0e6; - dseconds = - offset_register * (current_total_tick + delta_total_tick) / delta_total_tick; - - assert(dseconds > 0.0); - - /* Now set the thing off */ - if (gettimeofday(&T0, NULL) < 0) { - LOG_FATAL(LOGF_SysLinux, "gettimeofday() failed"); - } - - if (TMX_SetTick(slewing_tick) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - - /* Compute the dispersion we have introduced by changing tick this - way. We handle this by adding dispersion to all statistics held - at higher levels in the system. */ - - update_fast_slew_error(&T0); - lcl_InvokeDispersionNotifyHandlers(fast_slew_error); - - fast_slewing = 1; - slew_start_tv = T0; - - if (dseconds > MAX_FASTSLEW_TIMEOUT) - dseconds = MAX_FASTSLEW_TIMEOUT; - UTI_AddDoubleToTimeval(&T0, dseconds, &end_of_slew); - - slew_timeout_id = SCH_AddTimeout(&end_of_slew, handle_end_of_slew, NULL); - - fast_slew_wanted = offset_register; - offset_register = 0.0; - - } -} - -/* ================================================== */ - -/* This is the callback routine invoked by the scheduler at the end of - a slew. */ - -static void -handle_end_of_slew(void *anything) -{ - stop_fast_slew(); - initiate_slew(); /* To do any fine trimming required */ -} - -/* ================================================== */ -/* This routine is used to abort a slew that is in progress, if any */ - -static void -abort_slew(void) -{ - if (fast_slewing) { - stop_fast_slew(); - SCH_RemoveTimeout(slew_timeout_id); - } -} - -/* ================================================== */ -/* This routine accrues an offset into the offset register, and starts - a slew if required. - - The offset argument is measured in seconds. Positive means the - clock needs to be slewed backwards (i.e. is currently fast of true - time) */ - -static void -accrue_offset(double offset, double corr_rate) -{ - /* Add the new offset to the register */ - offset_register += offset; - - correction_rate = corr_rate; - - /* Select a new time constant on the next adjustment */ - pll_time_constant = -1; - - if (!fast_slewing) { - initiate_slew(); - } else { - adjust_fast_slew(current_total_tick, delta_total_tick); - } -} - /* ================================================== */ /* Positive means currently fast of true time, i.e. jump backwards */ @@ -646,10 +113,6 @@ apply_step_offset(double offset) struct timeval old_time, new_time; double err; - if (fast_slewing) { - abort_slew(); - } - if (have_setoffset) { if (TMX_ApplyStepOffset(-offset) < 0) { LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); @@ -672,9 +135,6 @@ apply_step_offset(double offset) UTI_DiffTimevalsToDouble(&err, &old_time, &new_time); lcl_InvokeDispersionNotifyHandlers(fabs(err)); } - - initiate_slew(); - } /* ================================================== */ @@ -688,10 +148,8 @@ static double set_frequency(double freq_ppm) { long required_tick; - long min_allowed_tick, max_allowed_tick; double required_freq; /* what we use */ double scaled_freq; /* what adjtimex & the kernel use */ - double old_total_tick; int required_delta_tick; required_delta_tick = our_round(freq_ppm / dhz); @@ -699,42 +157,12 @@ set_frequency(double freq_ppm) required_tick = nominal_tick - required_delta_tick; scaled_freq = freq_scale * required_freq; - min_allowed_tick = nominal_tick - max_tick_bias; - max_allowed_tick = nominal_tick + max_tick_bias; - - if (required_tick < min_allowed_tick || required_tick > max_allowed_tick) { - LOG(LOGS_WARN, LOGF_SysLinux, "Required tick %ld outside allowed range (%ld .. %ld)", required_tick, min_allowed_tick, max_allowed_tick); - if (required_tick < min_allowed_tick) { - required_tick = min_allowed_tick; - } else { - required_tick = max_allowed_tick; - } - } - - current_tick = required_tick; - old_total_tick = current_total_tick; - current_total_tick = ((double)current_tick + required_freq/dhz) / 1.0e6 ; - - /* Don't change tick if we are fast slewing, just reschedule the timeout */ - if (fast_slewing) { - required_tick = slewing_tick; - } - if (TMX_SetFrequency(&scaled_freq, required_tick) < 0) { LOG_FATAL(LOGF_SysLinux, "adjtimex failed for set_frequency, freq_ppm=%10.4e scaled_freq=%10.4e required_tick=%ld", freq_ppm, scaled_freq, required_tick); } - if (fast_slewing) { - double old_delta_tick; - - old_delta_tick = delta_total_tick; - delta_total_tick = ((double)slewing_tick + required_freq/dhz) / 1.0e6 - - current_total_tick; - adjust_fast_slew(old_total_tick, old_delta_tick); - } - - return dhz * (nominal_tick - current_tick) - scaled_freq / freq_scale; + return dhz * (nominal_tick - required_tick) - scaled_freq / freq_scale; } /* ================================================== */ @@ -752,10 +180,6 @@ read_frequency(void) LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); } - if (fast_slewing) { - tick -= slewing_tick - current_tick; - } - tick_term = dhz * (double)(nominal_tick - tick); freq_term = unscaled_freq / freq_scale; @@ -765,82 +189,6 @@ read_frequency(void) #endif return tick_term - freq_term; - -} - -/* ================================================== */ -/* Given a raw time, determine the correction in seconds to generate - the 'cooked' time. The correction has to be added to the - raw time */ - -static void -get_offset_correction(struct timeval *raw, - double *corr, double *err) -{ - - /* Correction is given by these things : - 1. Any value in offset register - 2. Amount of fast slew remaining - 3. Any amount of adjtime correction remaining - 4. Any amount of nanopll correction remaining */ - - - double fast_slew_duration; - double fast_slew_achieved; - double fast_slew_remaining; - long offset, noffset, toffset; - - if (!slow_slewing) { - offset = 0; - } else { - if (have_readonly_adjtime) { - if (TMX_GetOffsetLeft(&offset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - } else { - toffset = 0; - if (TMX_ApplyOffset(&toffset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - offset = toffset; - if (TMX_ApplyOffset(&toffset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - } - - if (offset == 0) { - /* adjtime slew has finished */ - slow_slewing = 0; - } - } - - if (!nano_slewing) { - noffset = 0; - } else { - if (TMX_GetPLLOffsetLeft(&noffset) < 0) { - LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); - } - if (noffset == 0) { - nano_slewing = 0; - } - } - - if (fast_slewing) { - UTI_DiffTimevalsToDouble(&fast_slew_duration, raw, &slew_start_tv); - fast_slew_achieved = delta_total_tick * fast_slew_duration / - (current_total_tick + delta_total_tick); - fast_slew_remaining = fast_slew_wanted + fast_slew_achieved; - } else { - fast_slew_remaining = 0.0; - } - - *corr = - (offset_register + fast_slew_remaining) + offset / 1.0e6 + noffset / 1.0e9; - - if (err) { - update_slow_slew_error(offset); - update_nano_slew_error(noffset, 0); - *err = get_slow_slew_error(raw) + get_fast_slew_error(raw) + get_nano_slew_error();; - } } /* ================================================== */ @@ -972,7 +320,6 @@ get_version_specific_details(void) dshift_hz = (double)(1UL << shift_hz); basic_freq_scale = dshift_hz / dhz; nominal_tick = (1000000L + (hz/2))/hz; /* Mirror declaration in kernel */ - slew_delta_tick = nominal_tick / 12; max_tick_bias = nominal_tick / 10; tick_update_hz = hz; @@ -1031,21 +378,6 @@ get_version_specific_details(void) } } - /* ADJ_OFFSET_SS_READ support. It's available since 2.6.24, - but was buggy until 2.6.28. */ - if (kernelvercmp(major, minor, patch, 2, 6, 28) < 0) { - have_readonly_adjtime = 0; - } else { - have_readonly_adjtime = 1; - } - - /* ADJ_NANO support */ - if (kernelvercmp(major, minor, patch, 2, 6, 27) < 0) { - have_nanopll = 0; - } else { - have_nanopll = 1; - } - /* ADJ_SETOFFSET support */ if (kernelvercmp(major, minor, patch, 2, 6, 39) < 0) { have_setoffset = 0; @@ -1053,21 +385,14 @@ get_version_specific_details(void) have_setoffset = 1; } - /* PLL time constant changed in 2.6.31 */ - if (kernelvercmp(major, minor, patch, 2, 6, 31) < 0) { - shift_pll = 4; - } else { - shift_pll = 2; - } - /* Override freq_scale if it appears in conf file */ CNF_GetLinuxFreqScale(&set_config_freq_scale, &config_freq_scale); if (set_config_freq_scale) { freq_scale = config_freq_scale; } - DEBUG_LOG(LOGF_SysLinux, "hz=%d shift_hz=%d freq_scale=%.8f nominal_tick=%d slew_delta_tick=%d max_tick_bias=%d shift_pll=%d", - hz, shift_hz, freq_scale, nominal_tick, slew_delta_tick, max_tick_bias, shift_pll); + DEBUG_LOG(LOGF_SysLinux, "hz=%d shift_hz=%d freq_scale=%.8f nominal_tick=%d max_tick_bias=%d", + hz, shift_hz, freq_scale, nominal_tick, max_tick_bias); } /* ================================================== */ @@ -1076,29 +401,12 @@ get_version_specific_details(void) void SYS_Linux_Initialise(void) { - long offset; - double freq; - - offset_register = 0.0; - fast_slewing = 0; - get_version_specific_details(); - offset = 0; - if (TMX_ApplyOffset(&offset) < 0) { + if (TMX_ResetOffset() < 0) { LOG_FATAL(LOGF_SysLinux, "adjtimex() failed"); } - if (have_readonly_adjtime && (TMX_GetOffsetLeft(&offset) < 0 || offset)) { - LOG(LOGS_INFO, LOGF_SysLinux, "adjtimex() doesn't support ADJ_OFFSET_SS_READ"); - have_readonly_adjtime = 0; - } - - if (have_nanopll && TMX_EnableNanoPLL() < 0) { - LOG(LOGS_INFO, LOGF_SysLinux, "adjtimex() doesn't support nanosecond PLL"); - have_nanopll = 0; - } - if (have_setoffset && TMX_TestStepOffset() < 0) { LOG(LOGS_INFO, LOGF_SysLinux, "adjtimex() doesn't support ADJ_SETOFFSET"); have_setoffset = 0; @@ -1106,13 +414,10 @@ SYS_Linux_Initialise(void) TMX_SetSync(CNF_GetRtcSync()); - /* Read current kernel frequency */ - TMX_GetFrequency(&freq, ¤t_tick); - current_total_tick = (current_tick + freq / freq_scale / dhz) / 1.0e6; - - lcl_RegisterSystemDrivers(read_frequency, set_frequency, - accrue_offset, apply_step_offset, - get_offset_correction, set_leap); + SYS_Generic_CompleteFreqDriver(1.0e6 * max_tick_bias / nominal_tick, + 1.0 / tick_update_hz, + read_frequency, set_frequency, + apply_step_offset, set_leap); } /* ================================================== */ @@ -1121,9 +426,7 @@ SYS_Linux_Initialise(void) void SYS_Linux_Finalise(void) { - /* Must *NOT* leave a fast slew running - clock would drift way off - if the daemon is not restarted */ - abort_slew(); + SYS_Generic_Finalise(); } /* ================================================== */ diff --git a/wrap_adjtimex.c b/wrap_adjtimex.c index 9e2f1b8..65427c2 100644 --- a/wrap_adjtimex.c +++ b/wrap_adjtimex.c @@ -37,26 +37,30 @@ static int status = 0; int -TMX_SetTick(long tick) +TMX_ResetOffset(void) { struct timex txc; - txc.modes = ADJ_TICK; - txc.tick = tick; - - return adjtimex(&txc); -} - -int -TMX_ApplyOffset(long *offset) -{ - struct timex txc; - int result; + /* Reset adjtime() offset */ txc.modes = ADJ_OFFSET_SINGLESHOT; - txc.offset = *offset; - result = adjtimex(&txc); - *offset = txc.offset; - return result; + txc.offset = 0; + if (adjtimex(&txc) < 0) + return -1; + + /* Reset PLL offset */ + txc.modes = ADJ_OFFSET | ADJ_STATUS; + txc.status = STA_PLL; + txc.offset = 0; + if (adjtimex(&txc) < 0) + return -1; + + /* Set status back */ + txc.modes = ADJ_STATUS; + txc.modes = status; + if (adjtimex(&txc) < 0) + return -1; + + return 0; } int @@ -93,17 +97,6 @@ TMX_GetFrequency(double *freq, long *tick) return result; } -int -TMX_GetOffsetLeft(long *offset) -{ - struct timex txc; - int result; - txc.modes = ADJ_OFFSET_SS_READ; - result = adjtimex(&txc); - *offset = txc.offset; - return result; -} - int TMX_ReadCurrentParams(struct tmx_params *params) { @@ -184,47 +177,6 @@ int TMX_SetSync(int sync) return adjtimex(&txc); } -int -TMX_EnableNanoPLL(void) -{ - struct timex txc; - int result; - - txc.modes = ADJ_STATUS | ADJ_OFFSET | ADJ_TIMECONST | ADJ_NANO; - txc.status = STA_PLL | STA_FREQHOLD; - txc.offset = 0; - txc.constant = 0; - result = adjtimex(&txc); - if (result < 0 || !(txc.status & STA_NANO) || txc.offset || txc.constant) - return -1; - - status |= STA_PLL | STA_FREQHOLD; - return result; -} - -int -TMX_ApplyPLLOffset(long offset, long constant) -{ - struct timex txc; - - txc.modes = ADJ_OFFSET | ADJ_TIMECONST | ADJ_NANO; - txc.offset = offset; - txc.constant = constant; - return adjtimex(&txc); -} - -int -TMX_GetPLLOffsetLeft(long *offset) -{ - struct timex txc; - int result; - - txc.modes = 0; - result = adjtimex(&txc); - *offset = txc.offset; - return result; -} - int TMX_TestStepOffset(void) { @@ -240,7 +192,7 @@ TMX_TestStepOffset(void) if (adjtimex(&txc) < 0 || txc.maxerror != 0) return -1; - txc.modes = ADJ_SETOFFSET; + txc.modes = ADJ_SETOFFSET | ADJ_NANO; txc.time.tv_sec = 0; txc.time.tv_usec = 0; if (adjtimex(&txc) < 0 || txc.maxerror < 100000) @@ -254,21 +206,13 @@ TMX_ApplyStepOffset(double offset) { struct timex txc; - txc.modes = ADJ_SETOFFSET; + txc.modes = ADJ_SETOFFSET | ADJ_NANO; if (offset >= 0) { txc.time.tv_sec = offset; } else { txc.time.tv_sec = offset - 1; } - - /* ADJ_NANO changes the status even with ADJ_SETOFFSET, use it only when - STA_NANO is already enabled */ - if (status & STA_PLL) { - txc.modes |= ADJ_NANO; - txc.time.tv_usec = 1e9 * (offset - txc.time.tv_sec); - } else { - txc.time.tv_usec = 1e6 * (offset - txc.time.tv_sec); - } + txc.time.tv_usec = 1.0e9 * (offset - txc.time.tv_sec); return adjtimex(&txc); } diff --git a/wrap_adjtimex.h b/wrap_adjtimex.h index 40167cd..e7913b7 100644 --- a/wrap_adjtimex.h +++ b/wrap_adjtimex.h @@ -64,17 +64,12 @@ struct tmx_params { long stbcnt; }; -int TMX_SetTick(long tick); -int TMX_ApplyOffset(long *offset); +int TMX_ResetOffset(void); int TMX_SetFrequency(double *freq, long tick); int TMX_GetFrequency(double *freq, long *tick); -int TMX_GetOffsetLeft(long *offset); int TMX_ReadCurrentParams(struct tmx_params *params); int TMX_SetLeap(int leap); int TMX_SetSync(int sync); -int TMX_EnableNanoPLL(void); -int TMX_ApplyPLLOffset(long offset, long constant); -int TMX_GetPLLOffsetLeft(long *offset); int TMX_TestStepOffset(void); int TMX_ApplyStepOffset(double offset);