Clients sockets are closed immediately after receiving valid response.
Don't wait for the first early HW TX timestamp to enable waiting for
late timestamps. It may take a long time or never come if the HW/driver
is consistently slow. It's a chicken and egg problem.
Instead, simply check if HW timestamping is enabled on at least one
interface. Responses from NTP sources on other interfaces will always be
saved (for 1 millisecond by default).
Rework handling of late HW TX timestamps. Instead of suspending reading
from client-only sockets that have HW TX timestamping enabled, save the
whole response if it is valid and a HW TX timestamp was received for the
source before. When the timestamp is received, or the configurable
timeout is reached, process the saved response again, but skip the
authentication test as the NTS code allows only one response per
request. Only one valid response per source can be saved. If a second
valid response is received while waiting for the timestamp, process both
responses immediately in the order they were received.
The main advantage of this approach is that it works on all sockets, i.e.
even in the symmetric mode and with NTP-over-PTP, and the kernel does
not need to buffer invalid responses.
With some hardware it takes milliseconds to get the HW TX timestamp.
Rework the code to handle multiple suspended client-only sockets at the
same time in order to allow longer timeouts, which may overlap for
different sources. Instead of waiting for the first read event simply
suspend the socket and create timeout when the HW TX timestamp is
requested.
When sending client requests to a close and fast server, it is possible
that a response will be received before the HW transmit timestamp of
the request itself. To avoid processing of the response without the HW
timestamp, monitor events returned by select() and suspend reading of
packets from the receive queue for up to 200 microseconds. As the
requests are normally separated by at least 200 milliseconds, it is
sufficient to monitor and suspend one socket at a time.
Enable SCM_TIMESTAMPING control messages and the socket's error queue in
order to receive our transmitted packets with a more accurate transmit
timestamp. Add a new file for Linux-specific NTP I/O and implement
processing of these messages there.