Rework handling of late HW TX timestamps. Instead of suspending reading
from client-only sockets that have HW TX timestamping enabled, save the
whole response if it is valid and a HW TX timestamp was received for the
source before. When the timestamp is received, or the configurable
timeout is reached, process the saved response again, but skip the
authentication test as the NTS code allows only one response per
request. Only one valid response per source can be saved. If a second
valid response is received while waiting for the timestamp, process both
responses immediately in the order they were received.
The main advantage of this approach is that it works on all sockets, i.e.
even in the symmetric mode and with NTP-over-PTP, and the kernel does
not need to buffer invalid responses.
Add a structure for 64-bit integers without requiring 64-bit alignment
to be usable in CMD_Reply without struct packing.
Add utility functions for conversion to/from network order. Avoid using
be64toh() and htobe64() as they don't seem to be available on all
supported systems.
Specify maxpoll for HW timestamping (default minpoll + 1) to track the
PHC well even when there is little NTP traffic on the interface. After
each PHC reading schedule a timeout according to the maxpoll. Polling
between minpoll and maxpoll is still triggered by HW timestamps.
Wait for the first HW timestamp before adding the timeout to avoid
polling PHCs on interfaces that are enabled in the configuration but
not used for NTP. Add a new scheduling class to separate polling of
different PHCs to avoid too long intervals between processing I/O
events.
In a non-tty session with chronyc it is not possible to detect the
end of the response without relying on timeouts, or separate responses
to a repeated command if using the -c option.
Add -e option to end each response with a line containing a single dot.
If the authenticator SIV encryption fails (e.g. due to wrong nonce
length), decrement the number of extension fields to keep the packet
info consistent.
Keep a server SIV instance for each available algorithm.
Select AES-128-GCM-SIV if requested by NTS-KE client as the first
supported algorithm.
Instead of encoding the AEAD ID in the cookie, select the algorithm
according to the length of decrypted keys. (This can work as a long as
all supported algorithms use keys with different lengths.)
If AES-128-GCM-SIV is available on the client, add it to the requested
algorithms in NTS-KE as the first (preferred) entry.
If supported on the server, it will make the cookies shorter, which
will get the length of NTP messages containing only one cookie below
200 octets. This should make NTS more reliable in networks where longer
NTP packets are filtered as a mitigation against amplification attacks
exploiting the ntpd mode 6/7 protocol.
While AES-SIV-CMAC allows nonces of any length, AES-GCM-SIV requires
exactly 12 bytes, which is less than the unpadded minimum length of 16
used in the NTS authenticator field. These functions will be needed to
support both ciphers in the NTS code.
This is a newer nonce misuse-resistant cipher specified in RFC 8452,
which is now supported in the development code of the Nettle library.
The advantages over AES-SIV-CMAC-256 are shorter keys and better
performance.
If the randomly generated timestamps are close to the current time, the
source can be selected for synchronization, which causes a crash when
logging the source name due to uninitialized ntp_sources.
Specify the source with the noselect option to prevent selection.
Call the function with current time instead of latest sample of the
first source to avoid undefined conversion of negative double to long
int.
Fixes: 07600cbd71 ("test: extend sources unit test")
Add a new test for maximum delay using a long-term estimate of a
p-quantile of the peer delay. If enabled, it replaces the
maxdelaydevratio test. It's main advantage is that it is not sensitive
to outliers corrupting the minimum delay.
As it can take a large number of samples for the estimate to reach the
expected value and adapt to a new value after a network change, the
option is recommended only for local networks with very short polling
intervals.
With the first interleaved response coming after a basic response the
client is forced to select the four timestamps covering most of the last
polling interval, which makes measured delay very sensitive to the
frequency offset between server and client. To avoid corrupting the
minimum delay held in sourcestats (which can cause testC failures),
reject the first interleaved response in the client/server mode as
failing the test A.
This does not change anything for the symmetric mode, where both sets of
the four timestamps generally cover a significant part of the polling
interval.
Estimate the 1st and 2nd 10-quantile of the reading delay and accept
only readings between them unless the error of the offset predicted from
previous samples is larger than the minimum reading error. With the 25
PHC readings per ioctl it should combine about 2-3 readings.
This should improve hwclock tracking and synchronization stability when
a PHC reading delay occasionally falls below the normal expected
minimum, or all readings in the batch are delayed significantly (e.g.
due to high PCIe load).
Add estimation of quantiles using the Frugal-2U streaming algorithm
(https://arxiv.org/pdf/1407.1121v1.pdf). It does not need to save
previous samples and adapts to changes in the distribution.
Allow multiple estimates of the same quantile and select the median for
better stability.
Move processing of PHC readings from sys_linux to hwclock, where
statistics can be collected and filtering improved.
In the PHC refclock driver accumulate the samples even if not in the
external timestamping mode to update the context which will be needed
for improved filtering.
The new unsynchronised source state is now reported in selectdata before
the first measurement.
Fixes: c29f8888c767 ("sources: handle unsynchronized sources in selection")
Add "local" option to specify that the reference clock is an
unsynchronized clock which is more stable than the system clock (e.g.
TCXO, OCXO, or atomic clock) and it should be used as a local standard
to stabilize the system clock.
Handle the local refclock as a PPS refclock locked to itself which gives
the unsynchronized status to be ignored in the source selection. Wait
for the refclock to get at least minsamples samples and adjust the clock
directly to follow changes in the refclock's sourcestats frequency and
offset.
There should be at most one refclock specified with this option.
Allow sources to accumulate samples with the leap status set to not
synchronized. Define a new state for them to be ignored in the
selection. This is intended for sources that are never synchronized and
will be used only for stabilization.
Avoid searching the hash table of sources when a packet in the client
mode is received. It cannot be a response from our source. Analogously,
avoid source lookups for transmitted packets in the server mode. This
doesn't change anything for packets in symmetric modes, which can be
requests and responses at the same time.
This slightly improves the maximum packet rate handled as a server.