The meaning of the poll value in KoD RATE packets is not currently
defined in the NTP specification (RFC 5905). In the reference NTP
implementation it signals the minimum acceptable polling interval to the
clients. In chrony the minimum poll is set to the KoD RATE poll if it's
larger, but not to a larger value than 10.
The problem is that ntpd as a server sets the KoD RATE poll to the
maximum of the client's poll and the configured rate limiting interval.
An attacker can send a burst of spoofed packets to the server to trigger
the client's request rate limit. When the client sends its next request
and the server responds with a KoD RATE packet, the client will set its
minimum poll to the current poll and it will no longer be able to switch
to a shorter poll when needed.
ntpd could be fixed to always set the KoD RATE poll to the rate limiting
interval. Unfortunately, ntpd as a client seems to depend on the current
behavior. It tries to follow the server poll and if the KoD RATE poll
was shorter than the current poll, the polling interval would be
reduced, defeating the purpose of KoD RATE. The server fix will probably
need to wait until clients are fixed and that could take a very long
time.
For now, ignore the poll value in KoD RATE packets. Just add an extra
delay based on the current poll to the next transmit timeout and stop an
ongoing burst.
First packet after setting a source to online was sent with constant
delay (0.2s). If the period in which the source was offline was shorter
than the current polling interval, the new packet was sent sooner than
it would be if the source wasn't switched to offline and back.
Don't reset the local tx timestamp when mode is changed. When starting
the initial transmit timeout, adjust the delay to make the interval
between the two packets at least as long as the current polling
interval.
Use UTI_GetRandomBytes() instead of random() to calculate the random
part of the timeout. This was the only remaining use of random() in the
code and the srandom() call can be removed.
In client packets set the leap, stratum, reference ID, reference time,
root delay and root dispersion to constant values to not reveal the
state of the synchronization. Use precision 32 to make the receive and
transmit timestamps completely random and not reveal the local time.
Use UTI_GetRandomBytes() instead of random() to generate random bits
below precision. Save the result in NTP_int64 in the network order and
allow precision in the full range from -32 to 32. With precision 32
the fuzzing now makes the timestamp completely random and can be used to
hide the time.
Add a function to fill a buffer with random bytes which uses a better
PRNG than random(). Use arc4random() if it's available on the system.
Fall back to reading from /dev/urandom, which should be available on
all currently supported systems.
After sending a client packet, schedule a timeout to close the socket
at the time when all server replies would fail the delay test, so the
socket is not open for longer than necessary (e.g. when the server is
unreachable). With the default maxdelay of 3 seconds the timeout is 7
seconds.
For testA in the client mode require also that the time the server
needed to process the client request is not longer than 4 seconds.
With maximum peer delay this limits the interval in which the client can
accept a server reply.
To avoid problems in the very unlikely case where a timeout is so long
and new IDs are allocated so frequently that they would have a chance
to overflow and catch up with it, make sure before returning new ID that
it's currently not in use.
Timeout ID of zero can be now safely used to indicate that the timer is
not running. Remove the extra timer_running variables that were
necessary to track that.
This is useful on computers that have an RTC, but there is no battery to
keep the time when they are turned off and start with the same time on
each boot.