When the poll value in a client request is smaller than the server's NTP
rate limiting interval, set poll in the response to the rate limiting
interval to suggest the client to increase its polling interval.
This follows ntpd as a server. No current client implementation seems to
be increasing its interval by the poll, but it may change in the future.
It was never used for anything and messages in debug output already
include filenames, which can be easily grepped if there is a need
to see log messages only from a particular file.
While the measurements log can be useful for debugging problems in NTP
configuration (e.g. authentication failures with symmetric keys), it
seems most users are interested only in valid measurements (e.g. for
producing graphs) and don't expect/handle entries where some of the RFC
5905 tests 1-7 failed. Modify the measurements log option to log only
valid measurements, and for debugging purposes add a new rawmeasurements
option.
When the server's transmit timestamp was updated with a kernel/HW
timestamp, it didn't include the time smoothing offset. If the offset
was larger than one second, the update failed and clients using the
interleaved mode received less accurate timestamps. If the update
succeeded, the clients received timestamps that were not adjusted for
the time smoothing offset, which added an error of up to 0.5s/1s to
their measured offset/delay.
Fix the update to include the smoothing offset in the new timestamp.
Before sending an NTP packet, check whether the TX timestamp is not
equal to the RX timestamp. If it is, generate a new TX timestamp and try
again. This is extremely unlikely to happen in normal operation, but it
is needed for reliable detection of the interleaved mode.
Instead of a worst-case delay use a mean value and relate it to the
source's time. This makes it more stable in the interleaved and
symmetric modes, which should improve the weighting and asymmetry
correction. Modify the test A and B to work with a minimum estimated
delay (delay - dispersion).
If the MAC in NTPv4 requests would be truncated, use version 3 by
default to avoid the truncation. This is necessary for compatibility
with older chronyd servers, which do not respond to messages with
truncated MACs.
In order to allow deterministic parsing of NTPv4 extension fields, the
MAC must not be longer than 192 bits (RFC 7822). One way to get around
this limitation when using symmetric keys which produce longer MACs is
to truncate them to 192 bits (32-bit key ID and 160-bit hash).
Modify the code to accept NTPv4 packets with MACs truncated to 192
bits, but still allow long MACs in NTPv4 packets to not break
compatibility with older chrony clients.
In a burst of three requests (two presend + one normal) the server can
detect the client is using the interleaved mode and save the transmit
timestamp of the second response for the third response. This shortens
the interval in which the server has to keep the state.
Rework the code to make a real request for presend and process the
response, but don't accumulate the sample. This allows presend to work
in the interleaved client mode.
Always allow update from the first valid response, even if its transmit
timestamp is not newer than the currently saved timestamp. This shoud
provide a temporary protection in the case where the attacker does have
an authenticated packet from future, but the peers are using the same
polling interval and the protocol is already synchronised. This could be
also useful in the case where the attacker cannot observe the traffic
and authentication is disabled.
A recently published paper [1] (section VIII) describes a DoS attack
on symmetric associations authenticated with a symmetric key where the
attacker can only observe and replay packets. Although the attacker
cannot prevent packets from reaching the other peer (not even by
flooding the network for example), s/he has the same power as a MitM
attacker.
As the authors explain, this is a fundamental flaw of the protocol,
which cannot be fixed in the general case. However, we can at least try
to protect associations in a case where the peers use the same polling
interval (i.e. for each request is expected one response) and all peers
that share the symmetric key never start with clocks in future or very
distant past (i.e. the attacker does not have any packets from future
that could be replayed).
Require that updates of the NTP state between requests have increasing
transmit timestamp and when a packet that passed all NTP tests to be
considered a valid response was received, don't allow any more updates
of the state from packets that don't pass the tests. This should ensure
the last update of the state is from the first time the last real
response was received and still allow the protocol to recover in case
one of the peers steps its clock back or the attacker does have a packet
from future and the attack stops.
[1] Aanchal Malhotra, Matthew Van Gundy, Mayank Varia, Haydn Kennedy,
Jonathan Gardner, and Sharon Goldberg. The Security of NTP's
Datagram Protocol. https://eprint.iacr.org/2016/1006
Adapt the interleaved symmetric mode for client/server associations.
On server, save the state needed for detection and responding in the
interleaved mode in the client log. On client, enable the interleaved
mode when the server is specified with the xleave option. Always accept
responses in basic mode to allow synchronization with servers that
don't support the interleaved mode, have too many clients, or have
multiple clients behing the same IP address. This is also necessary to
prevent DoS attacks on the client by overwriting or flushing the server
state. Protect the client's state variables against replay attacks as
the timestamps are now needed when processing the subsequent packet.