When chronyd is started with -R, the initstepslew directive and the
makestep directive with a positive limit will be ignored. This is useful
when restarting chronyd to avoid unnecessary clock adjustments. It can
be used with -r.
When there are duplicate ntp servers listed on the initstepslew line, 2
SourceRecords are created (sourceA and sourceB), and two timers are
created (timerA and timerB). When ntp responses are received, only
sourceA is updated because of the way read_from_socket searches for a
matching record. Eventually, the criteria for sourceA are met, causing
timerA to stop and n_completed_sources to increment. timerB continues
to trigger, sending ntp poll messages to the ntp server. Responses from
that server are assigned to sourceA, triggering the criteria for sourceA
and causing n_completed_sources to increment improperly. Once this
happens enough times, n_complete_sources == number of servers and all
SourceRecords are deleted. The next time timerB triggers, it attempts
to access sourceB, which was already been deleted, causing the core.
This should prevent chronyd from getting stuck and refusing new samples
due to failing test4 when the current measured frequency offset is close
to 1.0. That can happen when the system clock is stepped forward behind
chronyd's back.
leapsectz directive is used to set the name of the timezone in the
system tz database which chronyd can use to find out when will the next
leap second occur. It will periodically check if dates Jun 30 23:59:60
and Dec 31 23:59:60 are valid in that timezone. This is mainly useful
with reference clocks which don't provide the leap second information.
It is not necessary to restart chronyd if the tz database is updated
with a new leap second at least 12 hours before the event.
This directive sets the maximum allowed offset corrected on a clock
update. The check is performed only after the specified number of
updates to allow a large initial adjustment of the system clock. When
an offset larger than the specified maximum occurs, it will be ignored
for the specified number of times and then chronyd will give up
and exit (a negative value can be used to never exit). In both cases
a message is sent to syslog.
The corrtimeratio directive controls the ratio between the
duration in which the clock is slewed for an average correction
according to the source history and the interval in which the
corrections are done (usually the NTP polling interval). Corrections
larger than the average take less time and smaller corrections take
more time, the amount of the correction and the correction time are
inversely proportional.
Increasing corrtimeratio makes the overall frequency error of
the system clock smaller, but increases the overall time error as
the corrections will take longer.
By default, the ratio is 1, which means the duration of an average
correction will be close to the update interval.
The kernel currently doesn't support a linear adjustment with
programmable rate, extend the use of the kernel PLL with locked
frequency instead.
Set the PLL time constant according to the correction time corresponding
to the correction rate and corrected offset.
On kernels with nano PLL adjtime() is no longer used.
We want to correct the offset quickly, but we also want to keep the
frequency error caused by the correction itself low.
Define correction rate as the area of the region bounded by the graph of
offset corrected in time. Set the rate so that the time needed to correct
an offset equal to the current sourcestats stddev will be equal to the
update interval (assuming linear adjustment). The offset and the
time needed to make the correction are inversely proportional.
This is only a suggestion and it's up to the system driver how the
adjustment will be executed.