/* $Header: /cvs/src/chrony/rtc_linux.c,v 1.32 2003/09/22 21:22:30 richard Exp $ ======================================================================= chronyd/chronyc - Programs for keeping computer clocks accurate. ********************************************************************** * Copyright (C) Richard P. Curnow 1997-2003 * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * ********************************************************************** ======================================================================= Real-time clock driver for linux. This interfaces the program with the clock that keeps time when the machine is turned off. */ #if defined LINUX #ifdef sparc #define __KERNEL__ #endif #include #include #include #include #include #include #ifdef HAS_SPINLOCK_H #include #else /* Include dummy definition of spinlock_t to cope with earlier kernels. */ typedef int spinlock_t; #endif /* This is a complete hack since the alpha sys/io.h needs these types * but does not arrange them to be defined. This is almost certainly * not how one should do these things. -- broonie */ #include #ifdef __alpha__ typedef __u8 u8; typedef __u16 u16; typedef __u32 u32; typedef __u64 u64; #endif #if defined(__i386__) /* || defined(__sparc__) */ #include #else #include #define RTC_UIE 0x10 /* update-finished interrupt enable */ #endif #include #include #include #include #include #include #include "logging.h" #include "sched.h" #include "local.h" #include "util.h" #include "sys_linux.h" #include "regress.h" #include "rtc.h" #include "rtc_linux.h" #include "conf.h" #include "memory.h" #include "mkdirpp.h" /* ================================================== */ /* Forward prototypes */ static void measurement_timeout(void *any); static void read_from_device(void *any); /* ================================================== */ typedef enum { OM_NORMAL, OM_INITIAL, OM_AFTERTRIM } OperatingMode; static OperatingMode operating_mode = OM_NORMAL; /* ================================================== */ static int fd = -1; #define LOWEST_MEASUREMENT_PERIOD 15 #define HIGHEST_MEASUREMENT_PERIOD 480 /* Try to avoid doing regression after _every_ sample we accumulate */ #define N_SAMPLES_PER_REGRESSION 4 static int measurement_period = LOWEST_MEASUREMENT_PERIOD; static int timeout_running = 0; static SCH_TimeoutID timeout_id; /* ================================================== */ /* Maximum number of samples held */ #define MAX_SAMPLES 64 /* Real time clock samples. We store the seconds count as originally measured, together with a 'trim' that compensates these values for any steps made to the RTC to bring it back into line occasionally. The trim is in seconds. */ static time_t rtc_sec[MAX_SAMPLES]; static double rtc_trim[MAX_SAMPLES]; /* Reference time, against which delta times on the RTC scale are measured */ static time_t rtc_ref; /* System clock (gettimeofday) samples associated with the above samples. */ static struct timeval system_times[MAX_SAMPLES]; /* Number of samples currently stored. */ static int n_samples; /* Number of new samples since last regression */ static int n_samples_since_regression; /* Number of runs of residuals in last regression (for logging) */ static int n_runs; /* Coefficients */ /* Whether they are valid */ static int coefs_valid; /* Reference time */ static time_t coef_ref_time; /* Number of seconds by which RTC was fast of the system time at coef_ref_time */ static double coef_seconds_fast; /* Estimated number of seconds that RTC gains relative to system time for each second of ITS OWN time */ static double coef_gain_rate; /* Gain rate saved just before we step the RTC to correct it to the nearest second, so that we can write a useful set of coefs to the RTC data file once we have reacquired its offset after the step */ static double saved_coef_gain_rate; /* Filename supplied by config file where RTC coefficients are stored. */ static char *coefs_file_name; /* ================================================== */ /* Coefficients read from file at start of run. */ /* Whether we have tried to load the coefficients */ static int tried_to_load_coefs = 0; /* Whether valid coefficients were read */ static int valid_coefs_from_file = 0; /* Coefs read in */ static time_t file_ref_time; static double file_ref_offset, file_rate_ppm; /* ================================================== */ /* Flag to remember whether to assume the RTC is running on UTC */ static int rtc_on_utc = 0; /* ================================================== */ static FILE *logfile=NULL; static char *logfilename = NULL; static unsigned long logwrites=0; #define RTC_LOG "rtc.log" /* ================================================== */ static void (*after_init_hook)(void *) = NULL; static void *after_init_hook_arg = NULL; /* ================================================== */ static void discard_samples(int new_first) { int n_to_save; if (!(new_first < n_samples)) { CROAK("new_first should be < n_samples"); } if (!(new_first >= 0)) { CROAK("new_first should be non-negative"); } n_to_save = n_samples - new_first; memmove(rtc_sec, rtc_sec + new_first, n_to_save * sizeof(time_t)); memmove(rtc_trim, rtc_trim + new_first, n_to_save * sizeof(double)); memmove(system_times, system_times + new_first, n_to_save * sizeof(struct timeval)); n_samples = n_to_save; return; } /* ================================================== */ #define NEW_FIRST_WHEN_FULL 4 static void accumulate_sample(time_t rtc, struct timeval *sys) { if (n_samples == MAX_SAMPLES) { /* Discard oldest samples */ discard_samples(NEW_FIRST_WHEN_FULL); } rtc_sec[n_samples] = rtc; /* Always use most recent sample as reference */ rtc_ref = rtc; rtc_trim[n_samples] = 0.0; system_times[n_samples] = *sys; ++n_samples; ++n_samples_since_regression; return; } /* ================================================== */ /* The new_sample flag is to indicate whether to adjust the measurement period depending on the behaviour of the standard deviation. */ static void run_regression(int new_sample, int *valid, time_t *ref, double *fast, double *slope) { double rtc_rel[MAX_SAMPLES]; /* Relative times on RTC axis */ double offsets[MAX_SAMPLES]; /* How much the RTC is fast of the system clock */ int i, n; double est_intercept, est_slope; int best_new_start; if (n_samples > 0) { n = n_samples - 1; for (i=0; i 0) { discard_samples(best_new_start); } } else { /* Keep existing coefficients. */ } } else { /* Keep existing coefficients. */ } } /* ================================================== */ static void slew_samples (struct timeval *raw, struct timeval *cooked, double dfreq, double afreq_ppm, double doffset, int is_step_change, void *anything) { int i; double elapsed; double new_freq; double old_freq; double delta_time; double old_seconds_fast, old_gain_rate; new_freq = 1.0e-6 * afreq_ppm; old_freq = (new_freq - dfreq) / (1.0 - dfreq); for (i=0; i=32 the adjtimex()/RTC behaviour was modified, so that as long as the STA_UNSYNC flag is set the RTC is left alone. This is the mode we exploit here, so that the RTC continues to go its own sweet way, unless we make updates to it from this module. Linux 2.1.x - don't know, haven't got a system to look at. Linux 2.2.x, 2.3.x and 2.4.x are believed to be OK for all patch levels */ SYS_Linux_GetKernelVersion(&major, &minor, &patch); /* Obviously this test can get more elaborate when we know about more system types. */ if (major != 2) { return 0; } else { switch (minor) { case 0: if (patch <= 31) { return 0; } break; case 1: return 0; break; case 2: case 3: case 4: case 5: case 6: case 7: case 8: break; /* OK for all patch levels */ } } /* Setup details depending on configuration options */ setup_config(); /* In case it didn't get done by pre-init */ coefs_file_name = CNF_GetRtcFile(); /* Try to open device */ fd = open (CNF_GetRtcDevice(), O_RDWR); if (fd < 0) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not open %s, %s", CNF_GetRtcDevice(), strerror(errno)); return 0; } n_samples = 0; n_samples_since_regression = 0; n_runs = 0; coefs_valid = 0; measurement_period = LOWEST_MEASUREMENT_PERIOD; operating_mode = OM_NORMAL; /* Register file handler */ SCH_AddInputFileHandler(fd, read_from_device, NULL); /* Register slew handler */ LCL_AddParameterChangeHandler(slew_samples, NULL); if (CNF_GetLogRtc()) { direc = CNF_GetLogDir(); if (!mkdir_and_parents(direc)) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not create directory %s", direc); logfile = NULL; } else { logfilename = MallocArray(char, 2 + strlen(direc) + strlen(RTC_LOG)); strcpy(logfilename, direc); strcat(logfilename, "/"); strcat(logfilename, RTC_LOG); logfile = fopen(logfilename, "a"); if (!logfile) { LOG(LOGS_WARN, LOGF_RtcLinux, "Couldn't open logfile %s for update", logfilename); } } } return 1; } /* ================================================== */ void RTC_Linux_Finalise(void) { if (timeout_running) { SCH_RemoveTimeout(timeout_id); timeout_running = 0; } /* Remove input file handler */ if (fd >= 0) { SCH_RemoveInputFileHandler(fd); close(fd); /* Save the RTC data */ (void) RTC_Linux_WriteParameters(); } if (logfile) { fclose(logfile); } } /* ================================================== */ static void switch_interrupts(int onoff) { int status; if (onoff) { status = ioctl(fd, RTC_UIE_ON, 0); if (status < 0) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not start measurement : %s", strerror(errno)); return; } } else { status = ioctl(fd, RTC_UIE_OFF, 0); if (status < 0) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not stop measurement : %s", strerror(errno)); return; } } } /* ================================================== */ static void measurement_timeout(void *any) { timeout_running = 0; switch_interrupts(1); } /* ================================================== */ static void set_rtc(time_t new_rtc_time) { struct tm rtc_tm; struct rtc_time rtc_raw; int status; rtc_tm = *rtc_from_t(&new_rtc_time); rtc_raw.tm_sec = rtc_tm.tm_sec; rtc_raw.tm_min = rtc_tm.tm_min; rtc_raw.tm_hour = rtc_tm.tm_hour; rtc_raw.tm_mday = rtc_tm.tm_mday; rtc_raw.tm_mon = rtc_tm.tm_mon; rtc_raw.tm_year = rtc_tm.tm_year; status = ioctl(fd, RTC_SET_TIME, &rtc_raw); if (status < 0) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not set RTC time"); } } /* ================================================== */ static void handle_initial_trim(void) { double rate; long delta_time; double rtc_error_now, sys_error_now; /* The idea is to accumulate some number of samples at 1 second intervals, then do a robust regression fit to this. This should give a good fix on the intercept (=system clock error rel to RTC) at a particular time, removing risk of any particular sample being an outlier. We can then look at the elapsed interval since the epoch recorded in the RTC file, and correct the system time accordingly. */ run_regression(1, &coefs_valid, &coef_ref_time, &coef_seconds_fast, &coef_gain_rate); n_samples_since_regression = 0; n_samples = 0; read_coefs_from_file(); if (valid_coefs_from_file) { /* Can process data */ delta_time = coef_ref_time - file_ref_time; rate = 1.0e-6 * file_rate_ppm; rtc_error_now = file_ref_offset + rate * (double) delta_time; /* sys_error_now is positive if the system clock is fast */ sys_error_now = rtc_error_now - coef_seconds_fast; LOG(LOGS_INFO, LOGF_RtcLinux, "System trim from RTC = %f", sys_error_now); LCL_AccumulateOffset(sys_error_now); } else { LOG(LOGS_WARN, LOGF_RtcLinux, "No valid file coefficients, cannot trim system time"); } coefs_valid = 0; (after_init_hook)(after_init_hook_arg); operating_mode = OM_NORMAL; return; } /* ================================================== */ static void handle_relock_after_trim(void) { int valid; time_t ref; double fast, slope; run_regression(1, &valid, &ref, &fast, &slope); if (valid) { write_coefs_to_file(1,ref,fast,saved_coef_gain_rate); } else { LOG(LOGS_WARN, LOGF_RtcLinux, "Could not do regression after trim"); } n_samples = 0; n_samples_since_regression = 0; operating_mode = OM_NORMAL; measurement_period = LOWEST_MEASUREMENT_PERIOD; } /* ================================================== */ /* Day number of 1 Jan 1970 */ #define MJD_1970 40587 static void process_reading(time_t rtc_time, struct timeval *system_time) { double rtc_fast; accumulate_sample(rtc_time, system_time); switch (operating_mode) { case OM_NORMAL: if (n_samples_since_regression >= /* 4 */ 1 ) { run_regression(1, &coefs_valid, &coef_ref_time, &coef_seconds_fast, &coef_gain_rate); n_samples_since_regression = 0; } break; case OM_INITIAL: if (n_samples_since_regression >= 8) { handle_initial_trim(); } break; case OM_AFTERTRIM: if (n_samples_since_regression >= 8) { handle_relock_after_trim(); } break; default: CROAK("Impossible"); break; } if (logfile) { rtc_fast = (double)(rtc_time - system_time->tv_sec) - 1.0e-6 * (double) system_time->tv_usec; if (((logwrites++) % 32) == 0) { fprintf(logfile, "===============================================================================\n" " Date (UTC) Time RTC fast (s) Val Est fast (s) Slope (ppm) Ns Nr Meas\n" "===============================================================================\n"); } fprintf(logfile, "%s %14.6f %1d %14.6f %12.3f %2d %2d %4d\n", UTI_TimeToLogForm(system_time->tv_sec), rtc_fast, coefs_valid, coef_seconds_fast, coef_gain_rate * 1.0e6, n_samples, n_runs, measurement_period); fflush(logfile); } } /* ================================================== */ static void read_from_device(void *any) { int status; unsigned long data; struct timeval sys_time; struct rtc_time rtc_raw; struct tm rtc_tm; time_t rtc_t; double read_err; int error = 0; status = read(fd, &data, sizeof(data)); if (status < 0) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not read flags %s : %s", CNF_GetRtcDevice(), strerror(errno)); error = 1; goto turn_off_interrupt; } if ((data & RTC_UIE) == RTC_UIE) { /* Update interrupt detected */ /* Read RTC time, sandwiched between two polls of the system clock so we can bound any error. */ LCL_ReadCookedTime(&sys_time, &read_err); status = ioctl(fd, RTC_RD_TIME, &rtc_raw); if (status < 0) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not read time from %s : %s", CNF_GetRtcDevice(), strerror(errno)); error = 1; goto turn_off_interrupt; } /* Convert RTC time into a struct timeval */ rtc_tm.tm_sec = rtc_raw.tm_sec; rtc_tm.tm_min = rtc_raw.tm_min; rtc_tm.tm_hour = rtc_raw.tm_hour; rtc_tm.tm_mday = rtc_raw.tm_mday; rtc_tm.tm_mon = rtc_raw.tm_mon; rtc_tm.tm_year = rtc_raw.tm_year; rtc_t = t_from_rtc(&rtc_tm); if (rtc_t == (time_t)(-1)) { LOG(LOGS_ERR, LOGF_RtcLinux, "Could not convert RTC time to timeval"); error = 1; goto turn_off_interrupt; } process_reading(rtc_t, &sys_time); if (n_samples < 4) { measurement_period = LOWEST_MEASUREMENT_PERIOD; } else if (n_samples < 6) { measurement_period = LOWEST_MEASUREMENT_PERIOD << 1; } else if (n_samples < 10) { measurement_period = LOWEST_MEASUREMENT_PERIOD << 2; } else if (n_samples < 14) { measurement_period = LOWEST_MEASUREMENT_PERIOD << 3; } else { measurement_period = LOWEST_MEASUREMENT_PERIOD << 4; } } turn_off_interrupt: switch (operating_mode) { case OM_INITIAL: if (error) { LOG(LOGS_WARN, LOGF_RtcLinux, "Could not complete initial step due to errors"); operating_mode = OM_NORMAL; (after_init_hook)(after_init_hook_arg); switch_interrupts(0); timeout_running = 1; timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL); } break; case OM_AFTERTRIM: if (error) { LOG(LOGS_WARN, LOGF_RtcLinux, "Could not complete after trim relock due to errors"); operating_mode = OM_NORMAL; switch_interrupts(0); timeout_running = 1; timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL); } break; case OM_NORMAL: switch_interrupts(0); timeout_running = 1; timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL); break; default: CROAK("Impossible"); break; } } /* ================================================== */ void RTC_Linux_TimeInit(void (*after_hook)(void *), void *anything) { after_init_hook = after_hook; after_init_hook_arg = anything; operating_mode = OM_INITIAL; timeout_running = 0; switch_interrupts(1); } /* ================================================== */ void RTC_Linux_StartMeasurements(void) { timeout_running = 0; measurement_timeout(NULL); } /* ================================================== */ int RTC_Linux_WriteParameters(void) { int retval; if (fd < 0) { return RTC_ST_NODRV; } if (coefs_valid) { retval = write_coefs_to_file(1,coef_ref_time, coef_seconds_fast, coef_gain_rate); } else { /* Don't change the existing file, it may not be 100% valid but is our current best guess. */ retval = RTC_ST_OK; /*write_coefs_to_file(0,0,0.0,0.0); */ } return(retval); } /* ================================================== */ /* Try to set the system clock from the RTC, in the same manner as /sbin/clock -s -u would do. We're not as picky about OS version etc in this case, since we have fewer requirements regarding the RTC behaviour than we do for the rest of the module. */ void RTC_Linux_TimePreInit(void) { int fd, status; struct rtc_time rtc_raw; struct tm rtc_tm; time_t rtc_t, estimated_correct_rtc_t; long interval; double accumulated_error = 0.0; struct timeval new_sys_time; coefs_file_name = CNF_GetRtcFile(); setup_config(); read_coefs_from_file(); fd = open(CNF_GetRtcDevice(), O_RDONLY); if (fd < 0) { return; /* Can't open it, and won't be able to later */ } status = ioctl(fd, RTC_RD_TIME, &rtc_raw); if (status >= 0) { /* Convert to seconds since 1970 */ rtc_tm.tm_sec = rtc_raw.tm_sec; rtc_tm.tm_min = rtc_raw.tm_min; rtc_tm.tm_hour = rtc_raw.tm_hour; rtc_tm.tm_mday = rtc_raw.tm_mday; rtc_tm.tm_mon = rtc_raw.tm_mon; rtc_tm.tm_year = rtc_raw.tm_year; rtc_t = t_from_rtc(&rtc_tm); if (rtc_t != (time_t)(-1)) { /* Work out approximatation to correct time (to about the nearest second) */ if (valid_coefs_from_file) { interval = rtc_t - file_ref_time; accumulated_error = file_ref_offset + (double)(interval) * 1.0e-6 * file_rate_ppm; /* Correct time */ LOG(LOGS_INFO, LOGF_RtcLinux, "Set system time, error in RTC = %f", accumulated_error); estimated_correct_rtc_t = rtc_t - (long)(0.5 + accumulated_error); } else { estimated_correct_rtc_t = rtc_t - (long)(0.5 + accumulated_error); } new_sys_time.tv_sec = estimated_correct_rtc_t; new_sys_time.tv_usec = 0; /* Tough luck if this fails */ if (settimeofday(&new_sys_time, NULL) < 0) { LOG(LOGS_WARN, LOGF_RtcLinux, "Could not settimeofday"); } } else { LOG(LOGS_WARN, LOGF_RtcLinux, "Could not convert RTC reading to seconds since 1/1/1970"); } } close(fd); } /* ================================================== */ int RTC_Linux_GetReport(RPT_RTC_Report *report) { report->ref_time = (unsigned long) coef_ref_time; report->n_samples = n_samples; report->n_runs = n_runs; if (n_samples > 1) { report->span_seconds = ((rtc_sec[n_samples-1] - rtc_sec[0]) + (long)(rtc_trim[n_samples-1] - rtc_trim[0])); } else { report->span_seconds = 0; } report->rtc_seconds_fast = coef_seconds_fast; report->rtc_gain_rate_ppm = 1.0e6 * coef_gain_rate; return 1; } /* ================================================== */ int RTC_Linux_Trim(void) { struct timeval now; double local_clock_err; /* Remember the slope coefficient - we won't be able to determine a good one in a few seconds when we determine the new offset! */ saved_coef_gain_rate = coef_gain_rate; if (fabs(coef_seconds_fast) > 1.0) { LOG(LOGS_INFO, LOGF_RtcLinux, "Trimming RTC, error = %.3f seconds", coef_seconds_fast); /* Do processing to set clock. Let R be the value we set the RTC to, then in 500ms the RTC ticks (R+1) (see comments in arch/i386/kernel/time.c about the behaviour of the real time clock chip). If S is the system time now, the error at the next RTC tick is given by E = (R+1) - (S+0.5). Ideally we want |E| <= 0.5, which implies R <= S <= R+1, i.e. R is just the rounded down part of S, i.e. the seconds part. */ LCL_ReadCookedTime(&now, &local_clock_err); set_rtc(now.tv_sec); /* All old samples will now look bogus under the new regime. */ n_samples = 0; operating_mode = OM_AFTERTRIM; /* And start rapid sampling, interrupts on now */ if (timeout_running) { SCH_RemoveTimeout(timeout_id); timeout_running = 0; } switch_interrupts(1); } return 1; } /* ================================================== */ void RTC_Linux_CycleLogFile(void) { if (logfile && logfilename) { fclose(logfile); logfile = fopen(logfilename, "a"); if (!logfile) { LOG(LOGS_WARN, LOGF_RtcLinux, "Could not reopen logfile %s", logfilename); } logwrites = 0; } } /* ================================================== */ #endif /* defined LINUX */