chrony/test/unit/hwclock.c
Miroslav Lichvar 09b7f77f9a hwclock: refactor processing of PHC readings
Move processing of PHC readings from sys_linux to hwclock, where
statistics can be collected and filtering improved.

In the PHC refclock driver accumulate the samples even if not in the
external timestamping mode to update the context which will be needed
for improved filtering.
2022-06-09 12:04:20 +02:00

98 lines
3.4 KiB
C

/*
**********************************************************************
* Copyright (C) Miroslav Lichvar 2016-2018
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
*/
#include <hwclock.c>
#include "test.h"
#define MAX_READINGS 20
void
test_unit(void)
{
struct timespec start_hw_ts, start_local_ts, hw_ts, local_ts, ts;
struct timespec readings[MAX_READINGS][3];
HCL_Instance clock;
double freq, jitter, interval, dj, err, sum;
int i, j, k, l, n_readings, count;
LCL_Initialise();
for (i = 1; i <= 8; i++) {
clock = HCL_CreateInstance(random() % (1 << i), 1 << i, 1.0, 1e-9);
for (j = 0, count = 0, sum = 0.0; j < 100; j++) {
UTI_ZeroTimespec(&start_hw_ts);
UTI_ZeroTimespec(&start_local_ts);
UTI_AddDoubleToTimespec(&start_hw_ts, TST_GetRandomDouble(0.0, 1e9), &start_hw_ts);
UTI_AddDoubleToTimespec(&start_local_ts, TST_GetRandomDouble(0.0, 1e9), &start_local_ts);
DEBUG_LOG("iteration %d", j);
freq = TST_GetRandomDouble(0.9, 1.1);
jitter = TST_GetRandomDouble(10.0e-9, 1000.0e-9);
interval = TST_GetRandomDouble(0.1, 10.0);
clock->n_samples = 0;
clock->valid_coefs = 0;
for (k = 0; k < 100; k++) {
UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq, &hw_ts);
UTI_AddDoubleToTimespec(&start_local_ts, k * interval, &local_ts);
if (HCL_CookTime(clock, &hw_ts, &ts, NULL)) {
dj = fabs(UTI_DiffTimespecsToDouble(&ts, &local_ts) / jitter);
DEBUG_LOG("delta/jitter %f", dj);
if (clock->n_samples >= clock->max_samples / 2)
sum += dj, count++;
TEST_CHECK(clock->n_samples < 4 || dj <= 4.0);
TEST_CHECK(clock->n_samples < 8 || dj <= 3.0);
}
UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq + TST_GetRandomDouble(-jitter, jitter), &hw_ts);
if (HCL_NeedsNewSample(clock, &local_ts)) {
n_readings = random() % MAX_READINGS + 1;
for (l = 0; l < n_readings; l++) {
UTI_AddDoubleToTimespec(&local_ts, -TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][0]);
readings[l][1] = hw_ts;
UTI_AddDoubleToTimespec(&local_ts, TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][2]);
}
UTI_ZeroTimespec(&hw_ts);
UTI_ZeroTimespec(&local_ts);
if (HCL_ProcessReadings(clock, n_readings, readings, &hw_ts, &local_ts, &err))
HCL_AccumulateSample(clock, &hw_ts, &local_ts, 2.0 * jitter);
}
TEST_CHECK(clock->valid_coefs == (clock->n_samples >= 2));
if (!clock->valid_coefs)
continue;
TEST_CHECK(fabs(clock->offset) <= 2.0 * jitter);
}
}
TEST_CHECK(sum / count < 2.4 / sqrt(clock->max_samples));
HCL_DestroyInstance(clock);
}
LCL_Finalise();
}