chrony/test/unit/clientlog.c
Miroslav Lichvar 14b8df3702 clientlog: separate NTP timestamps from IP addresses
Instead of keeping one pair of RX and TX timestamp for each address, add
a separate RX->TX map using an ordered circular buffer. Save the RX
timestamps as 64-bit integers and search them with a combined linear
interpolation and binary algorithm.

This enables the server to support multiple interleaved clients sharing
the same IP address (e.g. NAT) and it will allow other improvements to
be implemented later. A drawback is that a single broken client sending
interleaved requests at a high rate (without spoofing the source
address) can now prevent clients on other addresses from getting
interleaved responses.

The total number of saved timestamps does not change. It's still
determined by the clientloglimit directive. A new option may be added
later if needed. The whole buffer is allocated at once, but only on
first use to not waste memory on client-only configurations.
2021-10-14 16:42:20 +02:00

255 lines
8.1 KiB
C

/*
**********************************************************************
* Copyright (C) Miroslav Lichvar 2016
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
*/
#include <config.h>
#include "test.h"
#if defined(FEAT_NTP) || defined(FEAT_CMDMON)
#include <clientlog.c>
static uint64_t
get_random64(void)
{
return ((uint64_t)random() << 40) ^ ((uint64_t)random() << 20) ^ random();
}
void
test_unit(void)
{
uint64_t ts64, prev_first_ts64, prev_last_ts64, max_step;
uint32_t index2, prev_first, prev_size;
struct timespec ts, ts2;
int i, j, k, index, shift;
CLG_Service s;
NTP_int64 ntp_ts;
IPAddr ip;
char conf[][100] = {
"clientloglimit 20000",
"ratelimit interval 3 burst 4 leak 3",
"cmdratelimit interval 3 burst 4 leak 3",
"ntsratelimit interval 6 burst 8 leak 3",
};
CNF_Initialise(0, 0);
for (i = 0; i < sizeof conf / sizeof conf[0]; i++)
CNF_ParseLine(NULL, i + 1, conf[i]);
CLG_Initialise();
TEST_CHECK(ARR_GetSize(records) == 16);
for (i = 0; i < 500; i++) {
DEBUG_LOG("iteration %d", i);
ts.tv_sec = (time_t)random() & 0x0fffffff;
ts.tv_nsec = 0;
for (j = 0; j < 1000; j++) {
TST_GetRandomAddress(&ip, IPADDR_UNSPEC, i % 8 ? -1 : i / 8 % 9);
DEBUG_LOG("address %s", UTI_IPToString(&ip));
s = random() % MAX_SERVICES;
index = CLG_LogServiceAccess(s, &ip, &ts);
TEST_CHECK(index >= 0);
CLG_LimitServiceRate(s, index);
UTI_AddDoubleToTimespec(&ts, (1 << random() % 14) / 100.0, &ts);
}
}
DEBUG_LOG("records %u", ARR_GetSize(records));
TEST_CHECK(ARR_GetSize(records) == 128);
s = CLG_NTP;
for (i = j = 0; i < 10000; i++) {
ts.tv_sec += 1;
index = CLG_LogServiceAccess(s, &ip, &ts);
TEST_CHECK(index >= 0);
if (!CLG_LimitServiceRate(s, index))
j++;
}
DEBUG_LOG("requests %d responses %d", i, j);
TEST_CHECK(j * 4 < i && j * 6 > i);
TEST_CHECK(!ntp_ts_map.timestamps);
UTI_ZeroNtp64(&ntp_ts);
CLG_SaveNtpTimestamps(&ntp_ts, NULL);
TEST_CHECK(ntp_ts_map.timestamps);
TEST_CHECK(ntp_ts_map.first == 0);
TEST_CHECK(ntp_ts_map.size == 0);
TEST_CHECK(ntp_ts_map.max_size == 128);
TEST_CHECK(ARR_GetSize(ntp_ts_map.timestamps) == ntp_ts_map.max_size);
TEST_CHECK(ntp_ts_map.max_size > NTPTS_INSERT_LIMIT);
for (i = 0; i < 200; i++) {
DEBUG_LOG("iteration %d", i);
max_step = (1ULL << (i % 50));
ts64 = 0ULL - 100 * max_step;
ntp_ts_map.first = i % ntp_ts_map.max_size;
ntp_ts_map.size = 0;
ntp_ts_map.cached_rx_ts = 0ULL;
for (j = 0; j < 500; j++) {
do {
ts64 += get_random64() % max_step + 1;
} while (ts64 == 0ULL);
int64_to_ntp64(ts64, &ntp_ts);
if (random() % 10) {
UTI_Ntp64ToTimespec(&ntp_ts, &ts);
UTI_AddDoubleToTimespec(&ts, TST_GetRandomDouble(-1.999, 1.999), &ts);
} else {
UTI_ZeroTimespec(&ts);
}
CLG_SaveNtpTimestamps(&ntp_ts,
UTI_IsZeroTimespec(&ts) ? (random() % 2 ? &ts : NULL) : &ts);
if (j < ntp_ts_map.max_size) {
TEST_CHECK(ntp_ts_map.size == j + 1);
TEST_CHECK(ntp_ts_map.first == i % ntp_ts_map.max_size);
} else {
TEST_CHECK(ntp_ts_map.size == ntp_ts_map.max_size);
TEST_CHECK(ntp_ts_map.first == (i + j + ntp_ts_map.size + 1) % ntp_ts_map.max_size);
}
TEST_CHECK(CLG_GetNtpTxTimestamp(&ntp_ts, &ts2));
TEST_CHECK(UTI_CompareTimespecs(&ts, &ts2) == 0);
for (k = random() % 4; k > 0; k--) {
int64_to_ntp64(get_ntp_tss(random() % ntp_ts_map.size)->rx_ts, &ntp_ts);
if (random() % 2)
TEST_CHECK(CLG_GetNtpTxTimestamp(&ntp_ts, &ts));
UTI_Ntp64ToTimespec(&ntp_ts, &ts);
UTI_AddDoubleToTimespec(&ts, TST_GetRandomDouble(-1.999, 1.999), &ts);
CLG_UpdateNtpTxTimestamp(&ntp_ts, &ts);
TEST_CHECK(CLG_GetNtpTxTimestamp(&ntp_ts, &ts2));
TEST_CHECK(UTI_CompareTimespecs(&ts, &ts2) == 0);
if (ntp_ts_map.size > 1) {
index = random() % (ntp_ts_map.size - 1);
if (get_ntp_tss(index)->rx_ts + 1 != get_ntp_tss(index + 1)->rx_ts) {
int64_to_ntp64(get_ntp_tss(index)->rx_ts + 1, &ntp_ts);
TEST_CHECK(!CLG_GetNtpTxTimestamp(&ntp_ts, &ts));
int64_to_ntp64(get_ntp_tss(index + 1)->rx_ts - 1, &ntp_ts);
TEST_CHECK(!CLG_GetNtpTxTimestamp(&ntp_ts, &ts));
CLG_UpdateNtpTxTimestamp(&ntp_ts, &ts);
}
}
if (random() % 2) {
int64_to_ntp64(get_ntp_tss(0)->rx_ts - 1, &ntp_ts);
TEST_CHECK(!CLG_GetNtpTxTimestamp(&ntp_ts, &ts));
int64_to_ntp64(get_ntp_tss(ntp_ts_map.size - 1)->rx_ts + 1, &ntp_ts);
TEST_CHECK(!CLG_GetNtpTxTimestamp(&ntp_ts, &ts));
CLG_UpdateNtpTxTimestamp(&ntp_ts, &ts);
}
}
}
for (j = 0; j < 500; j++) {
shift = (i % 3) * 26;
if (i % 7 == 0) {
while (ntp_ts_map.size < ntp_ts_map.max_size) {
ts64 += get_random64() >> (shift + 8);
int64_to_ntp64(ts64, &ntp_ts);
CLG_SaveNtpTimestamps(&ntp_ts, NULL);
if (ntp_ts_map.cached_index + NTPTS_INSERT_LIMIT < ntp_ts_map.size)
ts64 = get_ntp_tss(ntp_ts_map.size - 1)->rx_ts;
}
}
do {
if (ntp_ts_map.size > 1 && random() % 2) {
k = random() % (ntp_ts_map.size - 1);
ts64 = get_ntp_tss(k)->rx_ts +
(get_ntp_tss(k + 1)->rx_ts - get_ntp_tss(k)->rx_ts) / 2;
} else {
ts64 = get_random64() >> shift;
}
} while (ts64 == 0ULL);
int64_to_ntp64(ts64, &ntp_ts);
prev_first = ntp_ts_map.first;
prev_size = ntp_ts_map.size;
prev_first_ts64 = get_ntp_tss(0)->rx_ts;
prev_last_ts64 = get_ntp_tss(prev_size - 1)->rx_ts;
CLG_SaveNtpTimestamps(&ntp_ts, NULL);
TEST_CHECK(find_ntp_rx_ts(ts64, &index2));
if (ntp_ts_map.size > 1) {
TEST_CHECK(ntp_ts_map.size > 0 && ntp_ts_map.size <= ntp_ts_map.max_size);
if (get_ntp_tss(index2)->flags & NTPTS_DISABLED)
continue;
TEST_CHECK(get_ntp_tss(ntp_ts_map.size - 1)->rx_ts - ts64 <= NTPTS_FUTURE_LIMIT);
if ((int64_t)(prev_last_ts64 - ts64) <= NTPTS_FUTURE_LIMIT) {
TEST_CHECK(prev_size + 1 >= ntp_ts_map.size);
if (index2 + NTPTS_INSERT_LIMIT + 1 >= ntp_ts_map.size &&
!(index2 == 0 &&
((NTPTS_INSERT_LIMIT == prev_size && (int64_t)(ts64 - prev_first_ts64) > 0) ||
(NTPTS_INSERT_LIMIT + 1 == prev_size && (int64_t)(ts64 - prev_first_ts64) < 0))))
TEST_CHECK((prev_first + prev_size + 1) % ntp_ts_map.max_size ==
(ntp_ts_map.first + ntp_ts_map.size) % ntp_ts_map.max_size);
else
TEST_CHECK(prev_first + prev_size == ntp_ts_map.first + ntp_ts_map.size);
}
TEST_CHECK((int64_t)(get_ntp_tss(ntp_ts_map.size - 1)->rx_ts -
get_ntp_tss(0)->rx_ts) > 0);
for (k = 0; k + 1 < ntp_ts_map.size; k++)
TEST_CHECK((int64_t)(get_ntp_tss(k + 1)->rx_ts - get_ntp_tss(k)->rx_ts) > 0);
}
if (random() % 10 == 0) {
CLG_DisableNtpTimestamps(&ntp_ts);
TEST_CHECK(!CLG_GetNtpTxTimestamp(&ntp_ts, &ts));
}
for (k = random() % 10; k > 0; k--) {
ts64 = get_random64() >> shift;
int64_to_ntp64(ts64, &ntp_ts);
CLG_GetNtpTxTimestamp(&ntp_ts, &ts);
}
}
}
CLG_Finalise();
CNF_Finalise();
}
#else
void
test_unit(void)
{
TEST_REQUIRE(0);
}
#endif