When chrony reads in the linux rtc for the first time to trim the system clock, it only reads it once. As it is possible that the rtc updates itself during the read operation, the reported rtc time could be false. To prevent this I've added a loop that reads the rtc clock twice, if the seconds do not match retry the two read operations. If they match you can assume the read operation was successful. This is based on the hwclock implementation of reading the rtc clock from the util-linux package.
1119 lines
29 KiB
C
1119 lines
29 KiB
C
/*
|
|
chronyd/chronyc - Programs for keeping computer clocks accurate.
|
|
|
|
**********************************************************************
|
|
* Copyright (C) Richard P. Curnow 1997-2003
|
|
* Copyright (C) Miroslav Lichvar 2012
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
**********************************************************************
|
|
|
|
=======================================================================
|
|
|
|
Real-time clock driver for linux. This interfaces the program with
|
|
the clock that keeps time when the machine is turned off.
|
|
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "sysincl.h"
|
|
|
|
#include <linux/rtc.h>
|
|
|
|
#include "logging.h"
|
|
#include "sched.h"
|
|
#include "local.h"
|
|
#include "util.h"
|
|
#include "sys_linux.h"
|
|
#include "reference.h"
|
|
#include "regress.h"
|
|
#include "rtc.h"
|
|
#include "rtc_linux.h"
|
|
#include "conf.h"
|
|
#include "memory.h"
|
|
|
|
/* ================================================== */
|
|
/* Forward prototypes */
|
|
|
|
static void measurement_timeout(void *any);
|
|
|
|
static void read_from_device(void *any);
|
|
|
|
/* ================================================== */
|
|
|
|
typedef enum {
|
|
OM_NORMAL,
|
|
OM_INITIAL,
|
|
OM_AFTERTRIM
|
|
} OperatingMode;
|
|
|
|
static OperatingMode operating_mode = OM_NORMAL;
|
|
|
|
/* ================================================== */
|
|
|
|
static int fd = -1;
|
|
|
|
#define LOWEST_MEASUREMENT_PERIOD 15
|
|
#define HIGHEST_MEASUREMENT_PERIOD 480
|
|
#define N_SAMPLES_PER_REGRESSION 1
|
|
|
|
static int measurement_period = LOWEST_MEASUREMENT_PERIOD;
|
|
|
|
static int timeout_running = 0;
|
|
static SCH_TimeoutID timeout_id;
|
|
|
|
static int skip_interrupts;
|
|
|
|
/* ================================================== */
|
|
|
|
/* Maximum number of samples held */
|
|
#define MAX_SAMPLES 64
|
|
|
|
/* Real time clock samples. We store the seconds count as originally
|
|
measured, together with a 'trim' that compensates these values for
|
|
any steps made to the RTC to bring it back into line
|
|
occasionally. The trim is in seconds. */
|
|
static time_t rtc_sec[MAX_SAMPLES];
|
|
static double rtc_trim[MAX_SAMPLES];
|
|
|
|
/* Reference time, against which delta times on the RTC scale are measured */
|
|
static time_t rtc_ref;
|
|
|
|
|
|
/* System clock (gettimeofday) samples associated with the above
|
|
samples. */
|
|
static struct timeval system_times[MAX_SAMPLES];
|
|
|
|
/* Number of samples currently stored. */
|
|
static int n_samples;
|
|
|
|
/* Number of new samples since last regression */
|
|
static int n_samples_since_regression;
|
|
|
|
/* Number of runs of residuals in last regression (for logging) */
|
|
static int n_runs;
|
|
|
|
/* Coefficients */
|
|
/* Whether they are valid */
|
|
static int coefs_valid;
|
|
|
|
/* Reference time */
|
|
static time_t coef_ref_time;
|
|
/* Number of seconds by which RTC was fast of the system time at coef_ref_time */
|
|
static double coef_seconds_fast;
|
|
|
|
/* Estimated number of seconds that RTC gains relative to system time
|
|
for each second of ITS OWN time */
|
|
static double coef_gain_rate;
|
|
|
|
/* Gain rate saved just before we step the RTC to correct it to the
|
|
nearest second, so that we can write a useful set of coefs to the
|
|
RTC data file once we have reacquired its offset after the step */
|
|
static double saved_coef_gain_rate;
|
|
|
|
/* Threshold for automatic RTC trimming in seconds, zero when disabled */
|
|
static double autotrim_threshold;
|
|
|
|
/* Filename supplied by config file where RTC coefficients are
|
|
stored. */
|
|
static char *coefs_file_name;
|
|
|
|
/* ================================================== */
|
|
/* Coefficients read from file at start of run. */
|
|
|
|
/* Whether we have tried to load the coefficients */
|
|
static int tried_to_load_coefs = 0;
|
|
|
|
/* Whether valid coefficients were read */
|
|
static int valid_coefs_from_file = 0;
|
|
|
|
/* Coefs read in */
|
|
static time_t file_ref_time;
|
|
static double file_ref_offset, file_rate_ppm;
|
|
|
|
/* ================================================== */
|
|
|
|
/* Flag to remember whether to assume the RTC is running on UTC */
|
|
static int rtc_on_utc = 1;
|
|
|
|
/* ================================================== */
|
|
|
|
static LOG_FileID logfileid;
|
|
|
|
/* ================================================== */
|
|
|
|
static void (*after_init_hook)(void *) = NULL;
|
|
static void *after_init_hook_arg = NULL;
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
discard_samples(int new_first)
|
|
{
|
|
int n_to_save;
|
|
|
|
assert(new_first >= 0 && new_first < n_samples);
|
|
|
|
n_to_save = n_samples - new_first;
|
|
|
|
memmove(rtc_sec, rtc_sec + new_first, n_to_save * sizeof(time_t));
|
|
memmove(rtc_trim, rtc_trim + new_first, n_to_save * sizeof(double));
|
|
memmove(system_times, system_times + new_first, n_to_save * sizeof(struct timeval));
|
|
|
|
n_samples = n_to_save;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
#define NEW_FIRST_WHEN_FULL 4
|
|
|
|
static void
|
|
accumulate_sample(time_t rtc, struct timeval *sys)
|
|
{
|
|
|
|
if (n_samples == MAX_SAMPLES) {
|
|
/* Discard oldest samples */
|
|
discard_samples(NEW_FIRST_WHEN_FULL);
|
|
}
|
|
|
|
|
|
/* Always use most recent sample as reference */
|
|
/* use sample only if n_sample is not negative*/
|
|
if(n_samples >=0)
|
|
{
|
|
rtc_ref = rtc;
|
|
rtc_sec[n_samples] = rtc;
|
|
rtc_trim[n_samples] = 0.0;
|
|
system_times[n_samples] = *sys;
|
|
++n_samples_since_regression;
|
|
}
|
|
++n_samples;
|
|
}
|
|
|
|
/* ================================================== */
|
|
/* The new_sample flag is to indicate whether to adjust the
|
|
measurement period depending on the behaviour of the standard
|
|
deviation. */
|
|
|
|
static void
|
|
run_regression(int new_sample,
|
|
int *valid,
|
|
time_t *ref,
|
|
double *fast,
|
|
double *slope)
|
|
{
|
|
double rtc_rel[MAX_SAMPLES]; /* Relative times on RTC axis */
|
|
double offsets[MAX_SAMPLES]; /* How much the RTC is fast of the system clock */
|
|
int i;
|
|
double est_intercept, est_slope;
|
|
int best_new_start;
|
|
|
|
if (n_samples > 0) {
|
|
|
|
for (i=0; i<n_samples; i++) {
|
|
rtc_rel[i] = rtc_trim[i] + (double)(rtc_sec[i] - rtc_ref);
|
|
offsets[i] = ((double) (rtc_ref - system_times[i].tv_sec) -
|
|
(1.0e-6 * (double) system_times[i].tv_usec) +
|
|
rtc_rel[i]);
|
|
|
|
}
|
|
|
|
if (RGR_FindBestRobustRegression
|
|
(rtc_rel, offsets,
|
|
n_samples, 1.0e-9,
|
|
&est_intercept, &est_slope,
|
|
&n_runs,
|
|
&best_new_start)) {
|
|
|
|
/* Calculate and store coefficients. We don't do any error
|
|
bounds processing on any of these. */
|
|
*valid = 1;
|
|
*ref = rtc_ref;
|
|
*fast = est_intercept;
|
|
*slope = est_slope;
|
|
|
|
if (best_new_start > 0) {
|
|
discard_samples(best_new_start);
|
|
}
|
|
|
|
|
|
} else {
|
|
/* Keep existing coefficients. */
|
|
}
|
|
} else {
|
|
/* Keep existing coefficients. */
|
|
}
|
|
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
slew_samples
|
|
(struct timeval *raw, struct timeval *cooked,
|
|
double dfreq,
|
|
double doffset, int is_step_change,
|
|
void *anything)
|
|
{
|
|
int i;
|
|
double delta_time;
|
|
double old_seconds_fast, old_gain_rate;
|
|
|
|
for (i=0; i<n_samples; i++) {
|
|
UTI_AdjustTimeval(system_times + i, cooked, system_times + i, &delta_time,
|
|
dfreq, doffset);
|
|
}
|
|
|
|
old_seconds_fast = coef_seconds_fast;
|
|
old_gain_rate = coef_gain_rate;
|
|
|
|
if (coefs_valid) {
|
|
coef_seconds_fast += doffset;
|
|
coef_gain_rate += dfreq * (1.0 - coef_gain_rate);
|
|
}
|
|
|
|
DEBUG_LOG(LOGF_RtcLinux, "dfreq=%.8f doffset=%.6f old_fast=%.6f old_rate=%.3f new_fast=%.6f new_rate=%.3f",
|
|
dfreq, doffset,
|
|
old_seconds_fast, 1.0e6 * old_gain_rate,
|
|
coef_seconds_fast, 1.0e6 * coef_gain_rate);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
/* Function to convert from a time_t value represenging UTC to the
|
|
corresponding real time clock 'DMY HMS' form, taking account of
|
|
whether the user runs his RTC on the local time zone or UTC */
|
|
|
|
static struct tm *
|
|
rtc_from_t(const time_t *t)
|
|
{
|
|
if (rtc_on_utc) {
|
|
return gmtime(t);
|
|
} else {
|
|
return localtime(t);
|
|
}
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
/* Inverse function to get back from RTC 'DMY HMS' form to time_t UTC
|
|
form. This essentially uses mktime(), but involves some awful
|
|
complexity to cope with timezones. The problem is that mktime's
|
|
behaviour with regard to the daylight saving flag in the 'struct
|
|
tm' does not seem to be reliable across all systems, unless that
|
|
flag is set to zero.
|
|
|
|
tm_isdst = -1 does not seem to work with all libc's - it is treated
|
|
as meaning there is DST, or fails completely. (It is supposed to
|
|
use the timezone info to work out whether summer time is active at
|
|
the specified epoch).
|
|
|
|
tm_isdst = 1 fails if the local timezone has no summer time defined.
|
|
|
|
The approach taken is as follows. Suppose the RTC is on localtime.
|
|
We perform all mktime calls with the tm_isdst field set to zero.
|
|
|
|
Let y be the RTC reading in 'DMY HMS' form. Let M be the mktime
|
|
function with tm_isdst=0 and L be the localtime function.
|
|
|
|
We seek x such that y = L(x). Now there will exist a value Z(t)
|
|
such that M(L(t)) = t + Z(t) for all t, where Z(t) depends on
|
|
whether daylight saving is active at time t.
|
|
|
|
We want L(x) = y. Therefore M(L(x)) = x + Z = M(y). But
|
|
M(L(M(y))) = M(y) + Z. Therefore x = M(y) - Z = M(y) - (M(L(M(y)))
|
|
- M(y)).
|
|
|
|
The case for the RTC running on UTC is identical but without the
|
|
potential complication that Z depends on t.
|
|
*/
|
|
|
|
static time_t
|
|
t_from_rtc(struct tm *stm) {
|
|
struct tm temp1, temp2;
|
|
long diff;
|
|
time_t t1, t2;
|
|
|
|
temp1 = *stm;
|
|
temp1.tm_isdst = 0;
|
|
|
|
t1 = mktime(&temp1);
|
|
if (rtc_on_utc) {
|
|
temp2 = *gmtime(&t1);
|
|
} else {
|
|
temp2 = *localtime(&t1);
|
|
}
|
|
|
|
temp2.tm_isdst = 0;
|
|
t2 = mktime(&temp2);
|
|
diff = t2 - t1;
|
|
|
|
return t1 - diff;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
read_hwclock_file(const char *hwclock_file)
|
|
{
|
|
FILE *in;
|
|
char line[256];
|
|
int i;
|
|
|
|
if (!hwclock_file)
|
|
return;
|
|
|
|
in = fopen(hwclock_file, "r");
|
|
if (!in) {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not open hwclockfile %s",
|
|
hwclock_file);
|
|
return;
|
|
}
|
|
|
|
/* Read third line from the file. */
|
|
for (i = 0; i < 3; i++) {
|
|
if (!fgets(line, sizeof(line), in))
|
|
break;
|
|
}
|
|
|
|
fclose(in);
|
|
|
|
if (i == 3 && !strncmp(line, "LOCAL", 5)) {
|
|
rtc_on_utc = 0;
|
|
} else if (i == 3 && !strncmp(line, "UTC", 3)) {
|
|
rtc_on_utc = 1;
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not read LOCAL/UTC setting from hwclockfile %s",
|
|
hwclock_file);
|
|
}
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
setup_config(void)
|
|
{
|
|
if (CNF_GetRtcOnUtc()) {
|
|
rtc_on_utc = 1;
|
|
} else {
|
|
rtc_on_utc = 0;
|
|
}
|
|
|
|
read_hwclock_file(CNF_GetHwclockFile());
|
|
|
|
autotrim_threshold = CNF_GetRtcAutotrim();
|
|
}
|
|
|
|
/* ================================================== */
|
|
/* Read the coefficients from the file where they were saved
|
|
the last time the program was run. */
|
|
|
|
static void
|
|
read_coefs_from_file(void)
|
|
{
|
|
FILE *in;
|
|
char line[256];
|
|
|
|
if (!tried_to_load_coefs) {
|
|
|
|
valid_coefs_from_file = 0; /* only gets set true if we succeed */
|
|
|
|
tried_to_load_coefs = 1;
|
|
|
|
in = fopen(coefs_file_name, "r");
|
|
if (in) {
|
|
if (fgets(line, sizeof(line), in)) {
|
|
if (sscanf(line, "%d%ld%lf%lf",
|
|
&valid_coefs_from_file,
|
|
&file_ref_time,
|
|
&file_ref_offset,
|
|
&file_rate_ppm) == 4) {
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not parse coefficients line from RTC file %s",
|
|
coefs_file_name);
|
|
}
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not read first line from RTC file %s",
|
|
coefs_file_name);
|
|
}
|
|
fclose(in);
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not open RTC file %s for reading",
|
|
coefs_file_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ================================================== */
|
|
/* Write the coefficients to the file where they will be read
|
|
the next time the program is run. */
|
|
|
|
static int
|
|
write_coefs_to_file(int valid,time_t ref_time,double offset,double rate)
|
|
{
|
|
struct stat buf;
|
|
char *temp_coefs_file_name;
|
|
FILE *out;
|
|
int r1, r2;
|
|
|
|
/* Create a temporary file with a '.tmp' extension. */
|
|
|
|
temp_coefs_file_name = (char*) Malloc(strlen(coefs_file_name)+8);
|
|
|
|
if(!temp_coefs_file_name) {
|
|
return RTC_ST_BADFILE;
|
|
}
|
|
|
|
strcpy(temp_coefs_file_name,coefs_file_name);
|
|
strcat(temp_coefs_file_name,".tmp");
|
|
|
|
out = fopen(temp_coefs_file_name, "w");
|
|
if (!out) {
|
|
Free(temp_coefs_file_name);
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not open temporary RTC file %s.tmp for writing",
|
|
coefs_file_name);
|
|
return RTC_ST_BADFILE;
|
|
}
|
|
|
|
/* Gain rate is written out in ppm */
|
|
r1 = fprintf(out, "%1d %ld %.6f %.3f\n",
|
|
valid, ref_time, offset, 1.0e6 * rate);
|
|
r2 = fclose(out);
|
|
if (r1 < 0 || r2) {
|
|
Free(temp_coefs_file_name);
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not write to temporary RTC file %s.tmp",
|
|
coefs_file_name);
|
|
return RTC_ST_BADFILE;
|
|
}
|
|
|
|
/* Clone the file attributes from the existing file if there is one. */
|
|
|
|
if (!stat(coefs_file_name,&buf)) {
|
|
if (chown(temp_coefs_file_name,buf.st_uid,buf.st_gid)) {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not change ownership of temporary RTC file %s.tmp", coefs_file_name);
|
|
}
|
|
chmod(temp_coefs_file_name,buf.st_mode&0777);
|
|
}
|
|
|
|
/* Rename the temporary file to the correct location (see rename(2) for details). */
|
|
|
|
if (rename(temp_coefs_file_name,coefs_file_name)) {
|
|
unlink(temp_coefs_file_name);
|
|
Free(temp_coefs_file_name);
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not replace old RTC file %s.tmp with new one %s",
|
|
coefs_file_name, coefs_file_name);
|
|
return RTC_ST_BADFILE;
|
|
}
|
|
|
|
Free(temp_coefs_file_name);
|
|
|
|
return RTC_ST_OK;
|
|
}
|
|
|
|
|
|
/* ================================================== */
|
|
/* file_name is the name of the file where we save the RTC params
|
|
between executions. Return status is whether we could initialise
|
|
on this version of the system. */
|
|
|
|
int
|
|
RTC_Linux_Initialise(void)
|
|
{
|
|
/* Setup details depending on configuration options */
|
|
setup_config();
|
|
|
|
/* In case it didn't get done by pre-init */
|
|
coefs_file_name = CNF_GetRtcFile();
|
|
|
|
/* Try to open device */
|
|
|
|
fd = open (CNF_GetRtcDevice(), O_RDWR);
|
|
if (fd < 0) {
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not open %s, %s", CNF_GetRtcDevice(), strerror(errno));
|
|
return 0;
|
|
}
|
|
|
|
/* Close on exec */
|
|
UTI_FdSetCloexec(fd);
|
|
|
|
n_samples = 0;
|
|
n_samples_since_regression = 0;
|
|
n_runs = 0;
|
|
coefs_valid = 0;
|
|
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD;
|
|
|
|
operating_mode = OM_NORMAL;
|
|
|
|
/* Register file handler */
|
|
SCH_AddInputFileHandler(fd, read_from_device, NULL);
|
|
|
|
/* Register slew handler */
|
|
LCL_AddParameterChangeHandler(slew_samples, NULL);
|
|
|
|
logfileid = CNF_GetLogRtc() ? LOG_FileOpen("rtc",
|
|
" Date (UTC) Time RTC fast (s) Val Est fast (s) Slope (ppm) Ns Nr Meas")
|
|
: -1;
|
|
return 1;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
RTC_Linux_Finalise(void)
|
|
{
|
|
if (timeout_running) {
|
|
SCH_RemoveTimeout(timeout_id);
|
|
timeout_running = 0;
|
|
}
|
|
|
|
/* Remove input file handler */
|
|
if (fd >= 0) {
|
|
SCH_RemoveInputFileHandler(fd);
|
|
close(fd);
|
|
|
|
/* Save the RTC data */
|
|
(void) RTC_Linux_WriteParameters();
|
|
|
|
}
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
switch_interrupts(int onoff)
|
|
{
|
|
int status;
|
|
|
|
if (onoff) {
|
|
status = ioctl(fd, RTC_UIE_ON, 0);
|
|
if (status < 0) {
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not start measurement : %s", strerror(errno));
|
|
return;
|
|
}
|
|
skip_interrupts = 1;
|
|
} else {
|
|
status = ioctl(fd, RTC_UIE_OFF, 0);
|
|
if (status < 0) {
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not stop measurement : %s", strerror(errno));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
measurement_timeout(void *any)
|
|
{
|
|
timeout_running = 0;
|
|
switch_interrupts(1);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
set_rtc(time_t new_rtc_time)
|
|
{
|
|
struct tm rtc_tm;
|
|
struct rtc_time rtc_raw;
|
|
int status;
|
|
|
|
rtc_tm = *rtc_from_t(&new_rtc_time);
|
|
|
|
rtc_raw.tm_sec = rtc_tm.tm_sec;
|
|
rtc_raw.tm_min = rtc_tm.tm_min;
|
|
rtc_raw.tm_hour = rtc_tm.tm_hour;
|
|
rtc_raw.tm_mday = rtc_tm.tm_mday;
|
|
rtc_raw.tm_mon = rtc_tm.tm_mon;
|
|
rtc_raw.tm_year = rtc_tm.tm_year;
|
|
rtc_raw.tm_wday = rtc_tm.tm_wday;
|
|
rtc_raw.tm_yday = rtc_tm.tm_yday;
|
|
rtc_raw.tm_isdst = rtc_tm.tm_isdst;
|
|
|
|
status = ioctl(fd, RTC_SET_TIME, &rtc_raw);
|
|
if (status < 0) {
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not set RTC time");
|
|
}
|
|
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
handle_initial_trim(void)
|
|
{
|
|
double rate;
|
|
long delta_time;
|
|
double rtc_error_now, sys_error_now;
|
|
|
|
/* The idea is to accumulate some number of samples at 1 second
|
|
intervals, then do a robust regression fit to this. This
|
|
should give a good fix on the intercept (=system clock error
|
|
rel to RTC) at a particular time, removing risk of any
|
|
particular sample being an outlier. We can then look at the
|
|
elapsed interval since the epoch recorded in the RTC file,
|
|
and correct the system time accordingly. */
|
|
|
|
run_regression(1, &coefs_valid, &coef_ref_time, &coef_seconds_fast, &coef_gain_rate);
|
|
|
|
n_samples_since_regression = 0;
|
|
|
|
/* Set sample number to -1 so the next sample is not used, as it will not yet be corrected for System Trim*/
|
|
|
|
n_samples = -1;
|
|
|
|
|
|
read_coefs_from_file();
|
|
|
|
if (valid_coefs_from_file) {
|
|
/* Can process data */
|
|
delta_time = coef_ref_time - file_ref_time;
|
|
rate = 1.0e-6 * file_rate_ppm;
|
|
rtc_error_now = file_ref_offset + rate * (double) delta_time;
|
|
|
|
/* sys_error_now is positive if the system clock is fast */
|
|
sys_error_now = rtc_error_now - coef_seconds_fast;
|
|
|
|
LOG(LOGS_INFO, LOGF_RtcLinux, "System trim from RTC = %f", sys_error_now);
|
|
LCL_AccumulateOffset(sys_error_now, 0.0);
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "No valid file coefficients, cannot trim system time");
|
|
}
|
|
|
|
coefs_valid = 0;
|
|
|
|
(after_init_hook)(after_init_hook_arg);
|
|
|
|
operating_mode = OM_NORMAL;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
handle_relock_after_trim(void)
|
|
{
|
|
int valid;
|
|
time_t ref;
|
|
double fast, slope;
|
|
|
|
valid = 0;
|
|
run_regression(1, &valid, &ref, &fast, &slope);
|
|
|
|
if (valid) {
|
|
write_coefs_to_file(1,ref,fast,saved_coef_gain_rate);
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not do regression after trim");
|
|
}
|
|
|
|
coefs_valid = 0;
|
|
n_samples = 0;
|
|
n_samples_since_regression = 0;
|
|
operating_mode = OM_NORMAL;
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
maybe_autotrim(void)
|
|
{
|
|
/* Trim only when in normal mode, the coefficients are fresh, the current
|
|
offset is above the threshold and the system clock is synchronized */
|
|
|
|
if (operating_mode != OM_NORMAL || !coefs_valid || n_samples_since_regression)
|
|
return;
|
|
|
|
if (autotrim_threshold <= 0.0 || fabs(coef_seconds_fast) < autotrim_threshold)
|
|
return;
|
|
|
|
if (REF_GetOurStratum() >= 16)
|
|
return;
|
|
|
|
RTC_Linux_Trim();
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
process_reading(time_t rtc_time, struct timeval *system_time)
|
|
{
|
|
double rtc_fast;
|
|
|
|
accumulate_sample(rtc_time, system_time);
|
|
|
|
switch (operating_mode) {
|
|
case OM_NORMAL:
|
|
|
|
if (n_samples_since_regression >= N_SAMPLES_PER_REGRESSION) {
|
|
run_regression(1, &coefs_valid, &coef_ref_time, &coef_seconds_fast, &coef_gain_rate);
|
|
n_samples_since_regression = 0;
|
|
maybe_autotrim();
|
|
}
|
|
|
|
break;
|
|
case OM_INITIAL:
|
|
if (n_samples_since_regression >= 8) {
|
|
handle_initial_trim();
|
|
}
|
|
break;
|
|
case OM_AFTERTRIM:
|
|
if (n_samples_since_regression >= 8) {
|
|
handle_relock_after_trim();
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
|
|
if (logfileid != -1) {
|
|
rtc_fast = (double)(rtc_time - system_time->tv_sec) - 1.0e-6 * (double) system_time->tv_usec;
|
|
|
|
LOG_FileWrite(logfileid, "%s %14.6f %1d %14.6f %12.3f %2d %2d %4d",
|
|
UTI_TimeToLogForm(system_time->tv_sec),
|
|
rtc_fast,
|
|
coefs_valid,
|
|
coef_seconds_fast, coef_gain_rate * 1.0e6, n_samples, n_runs, measurement_period);
|
|
}
|
|
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static void
|
|
read_from_device(void *any)
|
|
{
|
|
int status;
|
|
unsigned long data;
|
|
struct timeval sys_time;
|
|
struct rtc_time rtc_raw;
|
|
struct tm rtc_tm;
|
|
time_t rtc_t;
|
|
int error = 0;
|
|
|
|
status = read(fd, &data, sizeof(data));
|
|
|
|
if (status < 0) {
|
|
/* This looks like a bad error : the file descriptor was indicating it was
|
|
* ready to read but we couldn't read anything. Give up. */
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not read flags %s : %s", CNF_GetRtcDevice(), strerror(errno));
|
|
SCH_RemoveInputFileHandler(fd);
|
|
switch_interrupts(0); /* Likely to raise error too, but just to be sure... */
|
|
close(fd);
|
|
fd = -1;
|
|
return;
|
|
}
|
|
|
|
if (skip_interrupts > 0) {
|
|
/* Wait for the next interrupt, this one may be bogus */
|
|
skip_interrupts--;
|
|
return;
|
|
}
|
|
|
|
if ((data & RTC_UF) == RTC_UF) {
|
|
/* Update interrupt detected */
|
|
|
|
/* Read RTC time, sandwiched between two polls of the system clock
|
|
so we can bound any error. */
|
|
|
|
SCH_GetLastEventTime(&sys_time, NULL, NULL);
|
|
|
|
status = ioctl(fd, RTC_RD_TIME, &rtc_raw);
|
|
if (status < 0) {
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not read time from %s : %s", CNF_GetRtcDevice(), strerror(errno));
|
|
error = 1;
|
|
goto turn_off_interrupt;
|
|
}
|
|
|
|
/* Convert RTC time into a struct timeval */
|
|
rtc_tm.tm_sec = rtc_raw.tm_sec;
|
|
rtc_tm.tm_min = rtc_raw.tm_min;
|
|
rtc_tm.tm_hour = rtc_raw.tm_hour;
|
|
rtc_tm.tm_mday = rtc_raw.tm_mday;
|
|
rtc_tm.tm_mon = rtc_raw.tm_mon;
|
|
rtc_tm.tm_year = rtc_raw.tm_year;
|
|
|
|
rtc_t = t_from_rtc(&rtc_tm);
|
|
|
|
if (rtc_t == (time_t)(-1)) {
|
|
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not convert RTC time to timeval");
|
|
error = 1;
|
|
goto turn_off_interrupt;
|
|
}
|
|
|
|
process_reading(rtc_t, &sys_time);
|
|
|
|
if (n_samples < 4) {
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD;
|
|
} else if (n_samples < 6) {
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD << 1;
|
|
} else if (n_samples < 10) {
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD << 2;
|
|
} else if (n_samples < 14) {
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD << 3;
|
|
} else {
|
|
measurement_period = LOWEST_MEASUREMENT_PERIOD << 4;
|
|
}
|
|
|
|
}
|
|
|
|
turn_off_interrupt:
|
|
|
|
switch (operating_mode) {
|
|
case OM_INITIAL:
|
|
if (error) {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not complete initial step due to errors");
|
|
operating_mode = OM_NORMAL;
|
|
(after_init_hook)(after_init_hook_arg);
|
|
|
|
switch_interrupts(0);
|
|
|
|
timeout_running = 1;
|
|
timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL);
|
|
}
|
|
|
|
break;
|
|
|
|
case OM_AFTERTRIM:
|
|
if (error) {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not complete after trim relock due to errors");
|
|
operating_mode = OM_NORMAL;
|
|
|
|
switch_interrupts(0);
|
|
|
|
timeout_running = 1;
|
|
timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL);
|
|
}
|
|
|
|
break;
|
|
|
|
case OM_NORMAL:
|
|
switch_interrupts(0);
|
|
|
|
timeout_running = 1;
|
|
timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL);
|
|
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
RTC_Linux_TimeInit(void (*after_hook)(void *), void *anything)
|
|
{
|
|
after_init_hook = after_hook;
|
|
after_init_hook_arg = anything;
|
|
|
|
operating_mode = OM_INITIAL;
|
|
timeout_running = 0;
|
|
switch_interrupts(1);
|
|
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
RTC_Linux_StartMeasurements(void)
|
|
{
|
|
timeout_running = 0;
|
|
measurement_timeout(NULL);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
int
|
|
RTC_Linux_WriteParameters(void)
|
|
{
|
|
int retval;
|
|
|
|
if (fd < 0) {
|
|
return RTC_ST_NODRV;
|
|
}
|
|
|
|
if (coefs_valid) {
|
|
retval = write_coefs_to_file(1,coef_ref_time, coef_seconds_fast, coef_gain_rate);
|
|
} else {
|
|
/* Don't change the existing file, it may not be 100% valid but is our
|
|
current best guess. */
|
|
retval = RTC_ST_OK; /*write_coefs_to_file(0,0,0.0,0.0); */
|
|
}
|
|
|
|
return(retval);
|
|
}
|
|
|
|
/* ================================================== */
|
|
/* Try to set the system clock from the RTC, in the same manner as
|
|
/sbin/hwclock -s would do. We're not as picky about OS version
|
|
etc in this case, since we have fewer requirements regarding the
|
|
RTC behaviour than we do for the rest of the module. */
|
|
|
|
void
|
|
RTC_Linux_TimePreInit(void)
|
|
{
|
|
int fd, status;
|
|
struct rtc_time rtc_raw, rtc_raw_retry;
|
|
struct tm rtc_tm;
|
|
time_t rtc_t, estimated_correct_rtc_t;
|
|
long interval;
|
|
double accumulated_error = 0.0;
|
|
struct timeval new_sys_time, old_sys_time;
|
|
|
|
coefs_file_name = CNF_GetRtcFile();
|
|
|
|
setup_config();
|
|
read_coefs_from_file();
|
|
|
|
fd = open(CNF_GetRtcDevice(), O_RDONLY);
|
|
|
|
if (fd < 0) {
|
|
return; /* Can't open it, and won't be able to later */
|
|
}
|
|
|
|
/* Retry reading the rtc until both read attempts give the same sec value.
|
|
This way the race condition is prevented that the RTC has updated itself
|
|
during the first read operation. */
|
|
do {
|
|
status = ioctl(fd, RTC_RD_TIME, &rtc_raw);
|
|
if (status >= 0) {
|
|
status = ioctl(fd, RTC_RD_TIME, &rtc_raw_retry);
|
|
}
|
|
} while (status >= 0 && rtc_raw.tm_sec != rtc_raw_retry.tm_sec);
|
|
|
|
if (status >= 0) {
|
|
/* Convert to seconds since 1970 */
|
|
rtc_tm.tm_sec = rtc_raw.tm_sec;
|
|
rtc_tm.tm_min = rtc_raw.tm_min;
|
|
rtc_tm.tm_hour = rtc_raw.tm_hour;
|
|
rtc_tm.tm_mday = rtc_raw.tm_mday;
|
|
rtc_tm.tm_mon = rtc_raw.tm_mon;
|
|
rtc_tm.tm_year = rtc_raw.tm_year;
|
|
|
|
rtc_t = t_from_rtc(&rtc_tm);
|
|
|
|
if (rtc_t != (time_t)(-1)) {
|
|
|
|
/* Work out approximatation to correct time (to about the
|
|
nearest second) */
|
|
if (valid_coefs_from_file) {
|
|
interval = rtc_t - file_ref_time;
|
|
accumulated_error = file_ref_offset + (double)(interval) * 1.0e-6 * file_rate_ppm;
|
|
|
|
/* Correct time */
|
|
estimated_correct_rtc_t = rtc_t - (long)(0.5 + accumulated_error);
|
|
} else {
|
|
estimated_correct_rtc_t = rtc_t - (long)(0.5 + accumulated_error);
|
|
}
|
|
|
|
new_sys_time.tv_sec = estimated_correct_rtc_t;
|
|
new_sys_time.tv_usec = 0;
|
|
|
|
/* Set system time only if the step is larger than 1 second */
|
|
if (!(gettimeofday(&old_sys_time, NULL) < 0) &&
|
|
(old_sys_time.tv_sec - new_sys_time.tv_sec > 1 ||
|
|
old_sys_time.tv_sec - new_sys_time.tv_sec < -1)) {
|
|
|
|
LOG(LOGS_INFO, LOGF_RtcLinux, "Set system time, error in RTC = %f",
|
|
accumulated_error);
|
|
|
|
/* Tough luck if this fails */
|
|
if (settimeofday(&new_sys_time, NULL) < 0) {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not settimeofday");
|
|
}
|
|
}
|
|
} else {
|
|
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not convert RTC reading to seconds since 1/1/1970");
|
|
}
|
|
}
|
|
|
|
close(fd);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
int
|
|
RTC_Linux_GetReport(RPT_RTC_Report *report)
|
|
{
|
|
report->ref_time.tv_sec = coef_ref_time;
|
|
report->ref_time.tv_usec = 0;
|
|
report->n_samples = n_samples;
|
|
report->n_runs = n_runs;
|
|
if (n_samples > 1) {
|
|
report->span_seconds = ((rtc_sec[n_samples-1] - rtc_sec[0]) +
|
|
(long)(rtc_trim[n_samples-1] - rtc_trim[0]));
|
|
} else {
|
|
report->span_seconds = 0;
|
|
}
|
|
report->rtc_seconds_fast = coef_seconds_fast;
|
|
report->rtc_gain_rate_ppm = 1.0e6 * coef_gain_rate;
|
|
return 1;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
int
|
|
RTC_Linux_Trim(void)
|
|
{
|
|
struct timeval now;
|
|
|
|
|
|
/* Remember the slope coefficient - we won't be able to determine a
|
|
good one in a few seconds when we determine the new offset! */
|
|
saved_coef_gain_rate = coef_gain_rate;
|
|
|
|
if (fabs(coef_seconds_fast) > 1.0) {
|
|
|
|
LOG(LOGS_INFO, LOGF_RtcLinux, "Trimming RTC, error = %.3f seconds", coef_seconds_fast);
|
|
|
|
/* Do processing to set clock. Let R be the value we set the
|
|
RTC to, then in 500ms the RTC ticks (R+1) (see comments in
|
|
arch/i386/kernel/time.c about the behaviour of the real time
|
|
clock chip). If S is the system time now, the error at the
|
|
next RTC tick is given by E = (R+1) - (S+0.5). Ideally we
|
|
want |E| <= 0.5, which implies R <= S <= R+1, i.e. R is just
|
|
the rounded down part of S, i.e. the seconds part. */
|
|
|
|
LCL_ReadCookedTime(&now, NULL);
|
|
|
|
set_rtc(now.tv_sec);
|
|
|
|
/* All old samples will now look bogus under the new
|
|
regime. */
|
|
n_samples = 0;
|
|
operating_mode = OM_AFTERTRIM;
|
|
|
|
/* Estimate the offset in case writertc is called or chronyd
|
|
is terminated during rapid sampling */
|
|
coef_seconds_fast = -now.tv_usec / 1e6 + 0.5;
|
|
coef_ref_time = now.tv_sec;
|
|
|
|
/* And start rapid sampling, interrupts on now */
|
|
if (timeout_running) {
|
|
SCH_RemoveTimeout(timeout_id);
|
|
timeout_running = 0;
|
|
}
|
|
switch_interrupts(1);
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|