chrony/test/unit/hwclock.c
Miroslav Lichvar 9c64fbb9c4 hwclock: improve filtering of readings
Estimate the 1st and 2nd 10-quantile of the reading delay and accept
only readings between them unless the error of the offset predicted from
previous samples is larger than the minimum reading error. With the 25
PHC readings per ioctl it should combine about 2-3 readings.

This should improve hwclock tracking and synchronization stability when
a PHC reading delay occasionally falls below the normal expected
minimum, or all readings in the batch are delayed significantly (e.g.
due to high PCIe load).
2022-06-09 16:01:22 +02:00

117 lines
3.8 KiB
C

/*
**********************************************************************
* Copyright (C) Miroslav Lichvar 2016-2018
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
*/
#include <config.h>
#include "test.h"
#if defined(FEAT_PHC) || defined(HAVE_LINUX_TIMESTAMPING)
#include <hwclock.c>
#define MAX_READINGS 20
void
test_unit(void)
{
struct timespec start_hw_ts, start_local_ts, hw_ts, local_ts, ts;
struct timespec readings[MAX_READINGS][3];
HCL_Instance clock;
double freq, jitter, interval, dj, err, sum;
int i, j, k, l, new_sample, n_readings, count;
LCL_Initialise();
TST_RegisterDummyDrivers();
for (i = 1; i <= 8; i++) {
clock = HCL_CreateInstance(random() % (1 << i), 1 << i, 1.0, 1e-9);
for (j = 0, count = 0, sum = 0.0; j < 100; j++) {
UTI_ZeroTimespec(&start_hw_ts);
UTI_ZeroTimespec(&start_local_ts);
UTI_AddDoubleToTimespec(&start_hw_ts, TST_GetRandomDouble(0.0, 1e9), &start_hw_ts);
UTI_AddDoubleToTimespec(&start_local_ts, TST_GetRandomDouble(0.0, 1e9), &start_local_ts);
DEBUG_LOG("iteration %d", j);
freq = TST_GetRandomDouble(0.9, 1.1);
jitter = TST_GetRandomDouble(10.0e-9, 1000.0e-9);
interval = TST_GetRandomDouble(0.1, 10.0);
clock->n_samples = 0;
clock->valid_coefs = 0;
QNT_Reset(clock->delay_quants);
new_sample = 0;
for (k = 0; k < 100; k++) {
UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq, &hw_ts);
UTI_AddDoubleToTimespec(&start_local_ts, k * interval, &local_ts);
if (HCL_CookTime(clock, &hw_ts, &ts, NULL) && new_sample) {
dj = fabs(UTI_DiffTimespecsToDouble(&ts, &local_ts) / jitter);
DEBUG_LOG("delta/jitter %f", dj);
if (clock->n_samples >= clock->max_samples / 2)
sum += dj, count++;
TEST_CHECK(clock->n_samples < 4 || dj <= 4.0);
TEST_CHECK(clock->n_samples < 8 || dj <= 3.0);
}
UTI_AddDoubleToTimespec(&start_hw_ts, k * interval * freq + TST_GetRandomDouble(-jitter, jitter), &hw_ts);
if (HCL_NeedsNewSample(clock, &local_ts)) {
n_readings = random() % MAX_READINGS + 1;
for (l = 0; l < n_readings; l++) {
UTI_AddDoubleToTimespec(&local_ts, -TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][0]);
readings[l][1] = hw_ts;
UTI_AddDoubleToTimespec(&local_ts, TST_GetRandomDouble(0.0, jitter / 10.0), &readings[l][2]);
}
UTI_ZeroTimespec(&hw_ts);
UTI_ZeroTimespec(&local_ts);
if (HCL_ProcessReadings(clock, n_readings, readings, &hw_ts, &local_ts, &err)) {
HCL_AccumulateSample(clock, &hw_ts, &local_ts, 2.0 * jitter);
new_sample = 1;
} else {
new_sample = 0;
}
}
TEST_CHECK(clock->valid_coefs == (clock->n_samples >= 2));
if (!clock->valid_coefs)
continue;
TEST_CHECK(fabs(clock->offset) <= 2.0 * jitter);
}
}
TEST_CHECK(sum / count < 2.4 / sqrt(clock->max_samples));
HCL_DestroyInstance(clock);
}
LCL_Finalise();
}
#else
void
test_unit(void)
{
TEST_REQUIRE(0);
}
#endif