chrony/refclock.c
2015-12-17 12:09:45 +01:00

943 lines
25 KiB
C

/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Miroslav Lichvar 2009-2011, 2013-2014
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Routines implementing reference clocks.
*/
#include "config.h"
#include "array.h"
#include "refclock.h"
#include "reference.h"
#include "conf.h"
#include "local.h"
#include "memory.h"
#include "util.h"
#include "sources.h"
#include "logging.h"
#include "regress.h"
#include "sched.h"
/* list of refclock drivers */
extern RefclockDriver RCL_SHM_driver;
extern RefclockDriver RCL_SOCK_driver;
extern RefclockDriver RCL_PPS_driver;
extern RefclockDriver RCL_PHC_driver;
struct FilterSample {
double offset;
double dispersion;
struct timeval sample_time;
};
struct MedianFilter {
int length;
int index;
int used;
int last;
int avg_var_n;
double avg_var;
double max_var;
struct FilterSample *samples;
int *selected;
double *x_data;
double *y_data;
double *w_data;
};
struct RCL_Instance_Record {
RefclockDriver *driver;
void *data;
char *driver_parameter;
int driver_parameter_length;
int driver_poll;
int driver_polled;
int poll;
int leap_status;
int pps_rate;
int pps_active;
struct MedianFilter filter;
uint32_t ref_id;
uint32_t lock_ref;
double offset;
double delay;
double precision;
SCH_TimeoutID timeout_id;
SRC_Instance source;
};
/* Array of RCL_Instance_Record */
static ARR_Instance refclocks;
static LOG_FileID logfileid;
static int valid_sample_time(RCL_Instance instance, struct timeval *tv);
static int pps_stratum(RCL_Instance instance, struct timeval *tv);
static void poll_timeout(void *arg);
static void slew_samples(struct timeval *raw, struct timeval *cooked, double dfreq,
double doffset, LCL_ChangeType change_type, void *anything);
static void add_dispersion(double dispersion, void *anything);
static void log_sample(RCL_Instance instance, struct timeval *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion);
static void filter_init(struct MedianFilter *filter, int length, double max_dispersion);
static void filter_fini(struct MedianFilter *filter);
static void filter_reset(struct MedianFilter *filter);
static double filter_get_avg_sample_dispersion(struct MedianFilter *filter);
static void filter_add_sample(struct MedianFilter *filter, struct timeval *sample_time, double offset, double dispersion);
static int filter_get_last_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion);
static int filter_select_samples(struct MedianFilter *filter);
static int filter_get_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion);
static void filter_slew_samples(struct MedianFilter *filter, struct timeval *when, double dfreq, double doffset);
static void filter_add_dispersion(struct MedianFilter *filter, double dispersion);
static RCL_Instance
get_refclock(unsigned int index)
{
return (RCL_Instance)ARR_GetElement(refclocks, index);
}
void
RCL_Initialise(void)
{
refclocks = ARR_CreateInstance(sizeof (struct RCL_Instance_Record));
CNF_AddRefclocks();
if (ARR_GetSize(refclocks) > 0) {
LCL_AddParameterChangeHandler(slew_samples, NULL);
LCL_AddDispersionNotifyHandler(add_dispersion, NULL);
}
logfileid = CNF_GetLogRefclocks() ? LOG_FileOpen("refclocks",
" Date (UTC) Time Refid DP L P Raw offset Cooked offset Disp.")
: -1;
}
void
RCL_Finalise(void)
{
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++) {
RCL_Instance inst = get_refclock(i);
if (inst->driver->fini)
inst->driver->fini(inst);
filter_fini(&inst->filter);
Free(inst->driver_parameter);
SRC_DestroyInstance(inst->source);
}
if (ARR_GetSize(refclocks) > 0) {
LCL_RemoveParameterChangeHandler(slew_samples, NULL);
LCL_RemoveDispersionNotifyHandler(add_dispersion, NULL);
}
ARR_DestroyInstance(refclocks);
}
int
RCL_AddRefclock(RefclockParameters *params)
{
int pps_source = 0;
RCL_Instance inst = ARR_GetNewElement(refclocks);
if (strcmp(params->driver_name, "SHM") == 0) {
inst->driver = &RCL_SHM_driver;
inst->precision = 1e-6;
} else if (strcmp(params->driver_name, "SOCK") == 0) {
inst->driver = &RCL_SOCK_driver;
inst->precision = 1e-9;
pps_source = 1;
} else if (strcmp(params->driver_name, "PPS") == 0) {
inst->driver = &RCL_PPS_driver;
inst->precision = 1e-9;
pps_source = 1;
} else if (strcmp(params->driver_name, "PHC") == 0) {
inst->driver = &RCL_PHC_driver;
inst->precision = 1e-9;
} else {
LOG_FATAL(LOGF_Refclock, "unknown refclock driver %s", params->driver_name);
return 0;
}
if (!inst->driver->init && !inst->driver->poll) {
LOG_FATAL(LOGF_Refclock, "refclock driver %s is not compiled in", params->driver_name);
return 0;
}
inst->data = NULL;
inst->driver_parameter = params->driver_parameter;
inst->driver_parameter_length = 0;
inst->driver_poll = params->driver_poll;
inst->poll = params->poll;
inst->driver_polled = 0;
inst->leap_status = LEAP_Normal;
inst->pps_rate = params->pps_rate;
inst->pps_active = 0;
inst->lock_ref = params->lock_ref_id;
inst->offset = params->offset;
inst->delay = params->delay;
if (params->precision > 0.0)
inst->precision = params->precision;
inst->timeout_id = -1;
inst->source = NULL;
if (inst->driver_parameter) {
int i;
inst->driver_parameter_length = strlen(inst->driver_parameter);
for (i = 0; i < inst->driver_parameter_length; i++)
if (inst->driver_parameter[i] == ':')
inst->driver_parameter[i] = '\0';
}
if (pps_source) {
if (inst->pps_rate < 1)
inst->pps_rate = 1;
} else {
inst->pps_rate = 0;
}
if (params->ref_id)
inst->ref_id = params->ref_id;
else {
unsigned char ref[5] = { 0, 0, 0, 0, 0 };
unsigned int index = ARR_GetSize(refclocks) - 1;
snprintf((char *)ref, sizeof (ref), "%3.3s", params->driver_name);
ref[3] = index % 10 + '0';
if (index >= 10)
ref[2] = (index / 10) % 10 + '0';
inst->ref_id = (uint32_t)ref[0] << 24 | ref[1] << 16 | ref[2] << 8 | ref[3];
}
if (inst->driver->poll) {
int max_samples;
if (inst->driver_poll > inst->poll)
inst->driver_poll = inst->poll;
max_samples = 1 << (inst->poll - inst->driver_poll);
if (max_samples < params->filter_length) {
if (max_samples < 4) {
LOG(LOGS_WARN, LOGF_Refclock, "Setting filter length for %s to %d",
UTI_RefidToString(inst->ref_id), max_samples);
}
params->filter_length = max_samples;
}
}
if (inst->driver->init)
if (!inst->driver->init(inst)) {
LOG_FATAL(LOGF_Refclock, "refclock %s initialisation failed", params->driver_name);
return 0;
}
filter_init(&inst->filter, params->filter_length, params->max_dispersion);
inst->source = SRC_CreateNewInstance(inst->ref_id, SRC_REFCLOCK, params->sel_option, NULL,
params->min_samples, params->max_samples);
DEBUG_LOG(LOGF_Refclock, "refclock %s refid=%s poll=%d dpoll=%d filter=%d",
params->driver_name, UTI_RefidToString(inst->ref_id),
inst->poll, inst->driver_poll, params->filter_length);
Free(params->driver_name);
return 1;
}
void
RCL_StartRefclocks(void)
{
unsigned int i, j, n;
n = ARR_GetSize(refclocks);
for (i = 0; i < n; i++) {
RCL_Instance inst = get_refclock(i);
SRC_SetActive(inst->source);
inst->timeout_id = SCH_AddTimeoutByDelay(0.0, poll_timeout, (void *)inst);
if (inst->lock_ref) {
/* Replace lock refid with index to refclocks */
for (j = 0; j < n && get_refclock(j)->ref_id != inst->lock_ref; j++)
;
inst->lock_ref = j < n ? j : -1;
} else
inst->lock_ref = -1;
}
}
void
RCL_ReportSource(RPT_SourceReport *report, struct timeval *now)
{
unsigned int i;
uint32_t ref_id;
assert(report->ip_addr.family == IPADDR_INET4);
ref_id = report->ip_addr.addr.in4;
for (i = 0; i < ARR_GetSize(refclocks); i++) {
RCL_Instance inst = get_refclock(i);
if (inst->ref_id == ref_id) {
report->poll = inst->poll;
report->mode = RPT_LOCAL_REFERENCE;
break;
}
}
}
void
RCL_SetDriverData(RCL_Instance instance, void *data)
{
instance->data = data;
}
void *
RCL_GetDriverData(RCL_Instance instance)
{
return instance->data;
}
char *
RCL_GetDriverParameter(RCL_Instance instance)
{
return instance->driver_parameter;
}
char *
RCL_GetDriverOption(RCL_Instance instance, char *name)
{
char *s, *e;
int n;
s = instance->driver_parameter;
e = s + instance->driver_parameter_length;
n = strlen(name);
while (1) {
s += strlen(s) + 1;
if (s >= e)
break;
if (!strncmp(name, s, n)) {
if (s[n] == '=')
return s + n + 1;
if (s[n] == '\0')
return s + n;
}
}
return NULL;
}
int
RCL_AddSample(RCL_Instance instance, struct timeval *sample_time, double offset, int leap)
{
double correction, dispersion;
struct timeval cooked_time;
LCL_GetOffsetCorrection(sample_time, &correction, &dispersion);
UTI_AddDoubleToTimeval(sample_time, correction, &cooked_time);
dispersion += instance->precision;
/* Make sure the timestamp and offset provided by the driver are sane */
if (!UTI_IsTimeOffsetSane(sample_time, offset) ||
!valid_sample_time(instance, sample_time))
return 0;
filter_add_sample(&instance->filter, &cooked_time, offset - correction + instance->offset, dispersion);
switch (leap) {
case LEAP_Normal:
case LEAP_InsertSecond:
case LEAP_DeleteSecond:
instance->leap_status = leap;
break;
default:
instance->leap_status = LEAP_Unsynchronised;
break;
}
instance->pps_active = 0;
log_sample(instance, &cooked_time, 0, 0, offset, offset - correction + instance->offset, dispersion);
/* for logging purposes */
if (!instance->driver->poll)
instance->driver_polled++;
return 1;
}
int
RCL_AddPulse(RCL_Instance instance, struct timeval *pulse_time, double second)
{
double correction, dispersion, offset;
struct timeval cooked_time;
int rate;
NTP_Leap leap;
leap = LEAP_Normal;
LCL_GetOffsetCorrection(pulse_time, &correction, &dispersion);
UTI_AddDoubleToTimeval(pulse_time, correction, &cooked_time);
dispersion += instance->precision;
if (!UTI_IsTimeOffsetSane(pulse_time, 0.0) ||
!valid_sample_time(instance, pulse_time))
return 0;
rate = instance->pps_rate;
assert(rate > 0);
offset = -second - correction + instance->offset;
/* Adjust the offset to [-0.5/rate, 0.5/rate) interval */
offset -= (long)(offset * rate) / (double)rate;
if (offset < -0.5 / rate)
offset += 1.0 / rate;
else if (offset >= 0.5 / rate)
offset -= 1.0 / rate;
if (instance->lock_ref != -1) {
RCL_Instance lock_refclock;
struct timeval ref_sample_time;
double sample_diff, ref_offset, ref_dispersion, shift;
lock_refclock = get_refclock(instance->lock_ref);
if (!filter_get_last_sample(&lock_refclock->filter,
&ref_sample_time, &ref_offset, &ref_dispersion)) {
DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored no ref sample");
return 0;
}
ref_dispersion += filter_get_avg_sample_dispersion(&lock_refclock->filter);
UTI_DiffTimevalsToDouble(&sample_diff, &cooked_time, &ref_sample_time);
if (fabs(sample_diff) >= 2.0 / rate) {
DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored samplediff=%.9f",
sample_diff);
return 0;
}
/* Align the offset to the reference sample */
if ((ref_offset - offset) >= 0.0)
shift = (long)((ref_offset - offset) * rate + 0.5) / (double)rate;
else
shift = (long)((ref_offset - offset) * rate - 0.5) / (double)rate;
offset += shift;
if (fabs(ref_offset - offset) + ref_dispersion + dispersion >= 0.2 / rate) {
DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored offdiff=%.9f refdisp=%.9f disp=%.9f",
ref_offset - offset, ref_dispersion, dispersion);
return 0;
}
leap = lock_refclock->leap_status;
DEBUG_LOG(LOGF_Refclock, "refclock pulse second=%.9f offset=%.9f offdiff=%.9f samplediff=%.9f",
second, offset, ref_offset - offset, sample_diff);
} else {
struct timeval ref_time;
int is_synchronised, stratum;
double root_delay, root_dispersion, distance;
uint32_t ref_id;
/* Ignore the pulse if we are not well synchronized */
REF_GetReferenceParams(&cooked_time, &is_synchronised, &leap, &stratum,
&ref_id, &ref_time, &root_delay, &root_dispersion);
distance = fabs(root_delay) / 2 + root_dispersion;
if (!is_synchronised || distance >= 0.5 / rate) {
DEBUG_LOG(LOGF_Refclock, "refclock pulse ignored second=%.9f sync=%d dist=%.9f",
second, is_synchronised, distance);
/* Drop also all stored samples */
filter_reset(&instance->filter);
return 0;
}
}
filter_add_sample(&instance->filter, &cooked_time, offset, dispersion);
instance->leap_status = leap;
instance->pps_active = 1;
log_sample(instance, &cooked_time, 0, 1, offset + correction - instance->offset, offset, dispersion);
/* for logging purposes */
if (!instance->driver->poll)
instance->driver_polled++;
return 1;
}
static int
valid_sample_time(RCL_Instance instance, struct timeval *tv)
{
struct timeval raw_time;
double diff;
LCL_ReadRawTime(&raw_time);
UTI_DiffTimevalsToDouble(&diff, &raw_time, tv);
if (diff < 0.0 || diff > UTI_Log2ToDouble(instance->poll + 1)) {
DEBUG_LOG(LOGF_Refclock, "%s refclock sample not valid age=%.6f tv=%s",
UTI_RefidToString(instance->ref_id), diff, UTI_TimevalToString(tv));
return 0;
}
return 1;
}
static int
pps_stratum(RCL_Instance instance, struct timeval *tv)
{
struct timeval ref_time;
int is_synchronised, stratum;
unsigned int i;
double root_delay, root_dispersion;
NTP_Leap leap;
uint32_t ref_id;
RCL_Instance refclock;
REF_GetReferenceParams(tv, &is_synchronised, &leap, &stratum,
&ref_id, &ref_time, &root_delay, &root_dispersion);
/* Don't change our stratum if local stratum is active
or this is the current source */
if (ref_id == instance->ref_id || REF_IsLocalActive())
return stratum - 1;
/* Or the current source is another PPS refclock */
for (i = 0; i < ARR_GetSize(refclocks); i++) {
refclock = get_refclock(i);
if (refclock->ref_id == ref_id &&
refclock->pps_active && refclock->lock_ref == -1)
return stratum - 1;
}
return 0;
}
static void
poll_timeout(void *arg)
{
int poll;
RCL_Instance inst = (RCL_Instance)arg;
poll = inst->poll;
if (inst->driver->poll) {
poll = inst->driver_poll;
inst->driver->poll(inst);
inst->driver_polled++;
}
if (!(inst->driver->poll && inst->driver_polled < (1 << (inst->poll - inst->driver_poll)))) {
double offset, dispersion;
struct timeval sample_time;
int sample_ok, stratum;
sample_ok = filter_get_sample(&inst->filter, &sample_time, &offset, &dispersion);
inst->driver_polled = 0;
if (sample_ok) {
if (inst->pps_active && inst->lock_ref == -1)
/* Handle special case when PPS is used with local stratum */
stratum = pps_stratum(inst, &sample_time);
else
stratum = 0;
SRC_UpdateReachability(inst->source, 1);
SRC_AccumulateSample(inst->source, &sample_time, offset,
inst->delay, dispersion, inst->delay, dispersion, stratum, inst->leap_status);
SRC_SelectSource(inst->source);
log_sample(inst, &sample_time, 1, 0, 0.0, offset, dispersion);
} else {
SRC_UpdateReachability(inst->source, 0);
}
}
inst->timeout_id = SCH_AddTimeoutByDelay(UTI_Log2ToDouble(poll), poll_timeout, arg);
}
static void
slew_samples(struct timeval *raw, struct timeval *cooked, double dfreq,
double doffset, LCL_ChangeType change_type, void *anything)
{
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++) {
if (change_type == LCL_ChangeUnknownStep)
filter_reset(&get_refclock(i)->filter);
else
filter_slew_samples(&get_refclock(i)->filter, cooked, dfreq, doffset);
}
}
static void
add_dispersion(double dispersion, void *anything)
{
unsigned int i;
for (i = 0; i < ARR_GetSize(refclocks); i++)
filter_add_dispersion(&get_refclock(i)->filter, dispersion);
}
static void
log_sample(RCL_Instance instance, struct timeval *sample_time, int filtered, int pulse, double raw_offset, double cooked_offset, double dispersion)
{
char sync_stats[4] = {'N', '+', '-', '?'};
if (logfileid == -1)
return;
if (!filtered) {
LOG_FileWrite(logfileid, "%s.%06d %-5s %3d %1c %1d %13.6e %13.6e %10.3e",
UTI_TimeToLogForm(sample_time->tv_sec),
(int)sample_time->tv_usec,
UTI_RefidToString(instance->ref_id),
instance->driver_polled,
sync_stats[instance->leap_status],
pulse,
raw_offset,
cooked_offset,
dispersion);
} else {
LOG_FileWrite(logfileid, "%s.%06d %-5s - %1c - - %13.6e %10.3e",
UTI_TimeToLogForm(sample_time->tv_sec),
(int)sample_time->tv_usec,
UTI_RefidToString(instance->ref_id),
sync_stats[instance->leap_status],
cooked_offset,
dispersion);
}
}
static void
filter_init(struct MedianFilter *filter, int length, double max_dispersion)
{
if (length < 1)
length = 1;
filter->length = length;
filter->index = -1;
filter->used = 0;
filter->last = -1;
/* set first estimate to system precision */
filter->avg_var_n = 0;
filter->avg_var = LCL_GetSysPrecisionAsQuantum() * LCL_GetSysPrecisionAsQuantum();
filter->max_var = max_dispersion * max_dispersion;
filter->samples = MallocArray(struct FilterSample, filter->length);
filter->selected = MallocArray(int, filter->length);
filter->x_data = MallocArray(double, filter->length);
filter->y_data = MallocArray(double, filter->length);
filter->w_data = MallocArray(double, filter->length);
}
static void
filter_fini(struct MedianFilter *filter)
{
Free(filter->samples);
Free(filter->selected);
Free(filter->x_data);
Free(filter->y_data);
Free(filter->w_data);
}
static void
filter_reset(struct MedianFilter *filter)
{
filter->index = -1;
filter->used = 0;
}
static double
filter_get_avg_sample_dispersion(struct MedianFilter *filter)
{
return sqrt(filter->avg_var);
}
static void
filter_add_sample(struct MedianFilter *filter, struct timeval *sample_time, double offset, double dispersion)
{
filter->index++;
filter->index %= filter->length;
filter->last = filter->index;
if (filter->used < filter->length)
filter->used++;
filter->samples[filter->index].sample_time = *sample_time;
filter->samples[filter->index].offset = offset;
filter->samples[filter->index].dispersion = dispersion;
DEBUG_LOG(LOGF_Refclock, "filter sample %d t=%s offset=%.9f dispersion=%.9f",
filter->index, UTI_TimevalToString(sample_time), offset, dispersion);
}
static int
filter_get_last_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion)
{
if (filter->last < 0)
return 0;
*sample_time = filter->samples[filter->last].sample_time;
*offset = filter->samples[filter->last].offset;
*dispersion = filter->samples[filter->last].dispersion;
return 1;
}
static const struct FilterSample *tmp_sorted_array;
static int
sample_compare(const void *a, const void *b)
{
const struct FilterSample *s1, *s2;
s1 = &tmp_sorted_array[*(int *)a];
s2 = &tmp_sorted_array[*(int *)b];
if (s1->offset < s2->offset)
return -1;
else if (s1->offset > s2->offset)
return 1;
return 0;
}
int
filter_select_samples(struct MedianFilter *filter)
{
int i, j, k, o, from, to, *selected;
double min_dispersion;
if (filter->used < 1)
return 0;
/* for lengths below 4 require full filter,
for 4 and above require at least 4 samples */
if ((filter->length < 4 && filter->used != filter->length) ||
(filter->length >= 4 && filter->used < 4))
return 0;
selected = filter->selected;
if (filter->used > 4) {
/* select samples with dispersion better than 1.5 * minimum */
for (i = 1, min_dispersion = filter->samples[0].dispersion; i < filter->used; i++) {
if (min_dispersion > filter->samples[i].dispersion)
min_dispersion = filter->samples[i].dispersion;
}
for (i = j = 0; i < filter->used; i++) {
if (filter->samples[i].dispersion <= 1.5 * min_dispersion)
selected[j++] = i;
}
} else {
j = 0;
}
if (j < 4) {
/* select all samples */
for (j = 0; j < filter->used; j++)
selected[j] = j;
}
/* and sort their indices by offset */
tmp_sorted_array = filter->samples;
qsort(selected, j, sizeof (int), sample_compare);
/* select 60 percent of the samples closest to the median */
if (j > 2) {
from = j / 5;
if (from < 1)
from = 1;
to = j - from;
} else {
from = 0;
to = j;
}
/* mark unused samples and sort the rest from oldest to newest */
o = filter->used - filter->index - 1;
for (i = 0; i < from; i++)
selected[i] = -1;
for (; i < to; i++)
selected[i] = (selected[i] + o) % filter->used;
for (; i < filter->used; i++)
selected[i] = -1;
for (i = from; i < to; i++) {
j = selected[i];
selected[i] = -1;
while (j != -1 && selected[j] != j) {
k = selected[j];
selected[j] = j;
j = k;
}
}
for (i = j = 0, k = -1; i < filter->used; i++) {
if (selected[i] != -1)
selected[j++] = (selected[i] + filter->used - o) % filter->used;
}
return j;
}
static int
filter_get_sample(struct MedianFilter *filter, struct timeval *sample_time, double *offset, double *dispersion)
{
struct FilterSample *s, *ls;
int i, n, dof;
double x, y, d, e, var, prev_avg_var;
n = filter_select_samples(filter);
if (n < 1)
return 0;
ls = &filter->samples[filter->selected[n - 1]];
/* prepare data */
for (i = 0; i < n; i++) {
s = &filter->samples[filter->selected[i]];
UTI_DiffTimevalsToDouble(&filter->x_data[i], &s->sample_time, &ls->sample_time);
filter->y_data[i] = s->offset;
filter->w_data[i] = s->dispersion;
}
/* mean offset, sample time and sample dispersion */
for (i = 0, x = y = e = 0.0; i < n; i++) {
x += filter->x_data[i];
y += filter->y_data[i];
e += filter->w_data[i];
}
x /= n;
y /= n;
e /= n;
if (n >= 4) {
double b0, b1, s2, sb0, sb1;
/* set y axis to the mean sample time */
for (i = 0; i < n; i++)
filter->x_data[i] -= x;
/* make a linear fit and use the estimated standard deviation of intercept
as dispersion */
RGR_WeightedRegression(filter->x_data, filter->y_data, filter->w_data, n,
&b0, &b1, &s2, &sb0, &sb1);
var = s2;
d = sb0;
dof = n - 2;
} else if (n >= 2) {
for (i = 0, d = 0.0; i < n; i++)
d += (filter->y_data[i] - y) * (filter->y_data[i] - y);
var = d / (n - 1);
d = sqrt(var);
dof = n - 1;
} else {
var = filter->avg_var;
d = sqrt(var);
dof = 1;
}
/* avoid having zero dispersion */
if (var < 1e-20) {
var = 1e-20;
d = sqrt(var);
}
/* drop the sample if variance is larger than allowed maximum */
if (filter->max_var > 0.0 && var > filter->max_var) {
DEBUG_LOG(LOGF_Refclock, "filter dispersion too large disp=%.9f max=%.9f",
sqrt(var), sqrt(filter->max_var));
return 0;
}
prev_avg_var = filter->avg_var;
/* update exponential moving average of the variance */
if (filter->avg_var_n > 50) {
filter->avg_var += dof / (dof + 50.0) * (var - filter->avg_var);
} else {
filter->avg_var = (filter->avg_var * filter->avg_var_n + var * dof) /
(dof + filter->avg_var_n);
if (filter->avg_var_n == 0)
prev_avg_var = filter->avg_var;
filter->avg_var_n += dof;
}
/* reduce noise in sourcestats weights by using the long-term average
instead of the estimated variance if it's not significantly lower */
if (var * dof / RGR_GetChi2Coef(dof) < prev_avg_var)
d = sqrt(filter->avg_var) * d / sqrt(var);
if (d < e)
d = e;
UTI_AddDoubleToTimeval(&ls->sample_time, x, sample_time);
*offset = y;
*dispersion = d;
filter_reset(filter);
return 1;
}
static void
filter_slew_samples(struct MedianFilter *filter, struct timeval *when, double dfreq, double doffset)
{
int i;
double delta_time;
struct timeval *sample;
for (i = 0; i < filter->used; i++) {
sample = &filter->samples[i].sample_time;
UTI_AdjustTimeval(sample, when, sample, &delta_time, dfreq, doffset);
filter->samples[i].offset -= delta_time;
}
}
static void
filter_add_dispersion(struct MedianFilter *filter, double dispersion)
{
int i;
for (i = 0; i < filter->used; i++) {
filter->samples[i].dispersion += dispersion;
}
}