chrony/sys_netbsd.c
Miroslav Lichvar 15e154c09d Handle immediate step in local module instead of system driver
This fixes the problem where scheduler wasn't notified about performed
steps and it also makes the command available on all supported systems.
2010-01-25 15:51:15 +01:00

328 lines
7.6 KiB
C

/*
$Header: /cvs/src/chrony/sys_netbsd.c,v 1.2 2002/02/17 22:13:49 richard Exp $
=======================================================================
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2001
* Copyright (C) J. Hannken-Illjes 2001
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Driver file for the NetBSD operating system.
*/
#ifdef __NetBSD__
#include <kvm.h>
#include <nlist.h>
#include <fcntl.h>
#include <assert.h>
#include <sys/time.h>
#include <stdio.h>
#include <signal.h>
#include "sys_netbsd.h"
#include "localp.h"
#include "logging.h"
#include "util.h"
/* ================================================== */
/* This register contains the number of seconds by which the local
clock was estimated to be fast of reference time at the epoch when
gettimeofday() returned T0 */
static double offset_register;
/* This register contains the epoch to which the offset is referenced */
static struct timeval T0;
/* This register contains the current estimate of the system
frequency, in absolute (NOT ppm) */
static double current_freq;
/* This register contains the number of seconds of adjustment that
were passed to adjtime last time it was called. */
static double adjustment_requested;
/* Kernel parameters to calculate adjtime error. */
static int kern_tickadj;
static long kern_bigadj;
/* ================================================== */
static void
clock_initialise(void)
{
struct timeval newadj, oldadj;
struct timezone tz;
offset_register = 0.0;
adjustment_requested = 0.0;
current_freq = 0.0;
if (gettimeofday(&T0, &tz) < 0) {
CROAK("gettimeofday() failed in clock_initialise()");
}
newadj.tv_sec = 0;
newadj.tv_usec = 0;
if (adjtime(&newadj, &oldadj) < 0) {
CROAK("adjtime() failed in clock_initialise");
}
}
/* ================================================== */
static void
clock_finalise(void)
{
/* Nothing to do yet */
}
/* ================================================== */
static void
start_adjust(void)
{
struct timeval newadj, oldadj;
struct timeval T1;
struct timezone tz;
double elapsed, accrued_error;
double adjust_required;
struct timeval exact_newadj;
long delta, tickdelta;
double rounding_error;
double old_adjust_remaining;
/* Determine the amount of error built up since the last adjustment */
if (gettimeofday(&T1, &tz) < 0) {
CROAK("gettimeofday() failed in start_adjust");
}
UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0);
accrued_error = elapsed * current_freq;
adjust_required = - (accrued_error + offset_register);
UTI_DoubleToTimeval(adjust_required, &exact_newadj);
/* At this point, we need to round the required adjustment the
same way the kernel does. */
delta = exact_newadj.tv_sec * 1000000 + exact_newadj.tv_usec;
if (delta > kern_bigadj || delta < -kern_bigadj)
tickdelta = 10 * kern_tickadj;
else
tickdelta = kern_tickadj;
if (delta % tickdelta)
delta = delta / tickdelta * tickdelta;
newadj.tv_sec = 0;
newadj.tv_usec = delta;
UTI_NormaliseTimeval(&newadj);
/* Add rounding error back onto offset register. */
UTI_DiffTimevalsToDouble(&rounding_error, &newadj, &exact_newadj);
if (adjtime(&newadj, &oldadj) < 0) {
CROAK("adjtime() failed in start_adjust");
}
UTI_TimevalToDouble(&oldadj, &old_adjust_remaining);
offset_register = rounding_error - old_adjust_remaining;
T0 = T1;
UTI_TimevalToDouble(&newadj, &adjustment_requested);
}
/* ================================================== */
static void
stop_adjust(void)
{
struct timeval T1;
struct timezone tz;
struct timeval zeroadj, remadj;
double adjustment_remaining, adjustment_achieved;
double elapsed, elapsed_plus_adjust;
zeroadj.tv_sec = 0;
zeroadj.tv_usec = 0;
if (adjtime(&zeroadj, &remadj) < 0) {
CROAK("adjtime() failed in stop_adjust");
}
if (gettimeofday(&T1, &tz) < 0) {
CROAK("gettimeofday() failed in stop_adjust");
}
UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0);
UTI_TimevalToDouble(&remadj, &adjustment_remaining);
adjustment_achieved = adjustment_requested - adjustment_remaining;
elapsed_plus_adjust = elapsed - adjustment_achieved;
offset_register += current_freq * elapsed_plus_adjust - adjustment_remaining;
adjustment_requested = 0.0;
T0 = T1;
}
/* ================================================== */
/* Positive offset means system clock is fast of true time, therefore
slew backwards */
static void
accrue_offset(double offset)
{
stop_adjust();
offset_register += offset;
start_adjust();
}
/* ================================================== */
/* Positive offset means system clock is fast of true time, therefore
step backwards */
static void
apply_step_offset(double offset)
{
struct timeval old_time, new_time, T1;
struct timezone tz;
stop_adjust();
if (gettimeofday(&old_time, &tz) < 0) {
CROAK("gettimeofday in apply_step_offset");
}
UTI_AddDoubleToTimeval(&old_time, -offset, &new_time);
if (settimeofday(&new_time, &tz) < 0) {
CROAK("settimeofday in apply_step_offset");
}
UTI_AddDoubleToTimeval(&T0, offset, &T1);
T0 = T1;
start_adjust();
}
/* ================================================== */
static void
set_frequency(double new_freq_ppm)
{
stop_adjust();
current_freq = new_freq_ppm * 1.0e-6;
start_adjust();
}
/* ================================================== */
static double
read_frequency(void)
{
return current_freq * 1.0e6;
}
/* ================================================== */
static void
get_offset_correction(struct timeval *raw,
double *corr)
{
stop_adjust();
*corr = -offset_register;
start_adjust();
}
/* ================================================== */
void
SYS_NetBSD_Initialise(void)
{
static struct nlist nl[] = {
{"_tickadj"},
{"_bigadj"},
{NULL}
};
kvm_t *kt;
FILE *fp;
kt = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL);
if (!kt) {
CROAK("Cannot open kvm\n");
}
if (kvm_nlist(kt, nl) < 0) {
CROAK("Cannot read kernel symbols\n");
}
if (kvm_read(kt, nl[0].n_value, (char *)(&kern_tickadj), sizeof(int)) < 0) {
CROAK("Cannot read from _tickadj\n");
}
if (kvm_read(kt, nl[1].n_value, (char *)(&kern_bigadj), sizeof(long)) < 0) {
/* kernel doesn't have the symbol, use one second instead */
kern_bigadj = 1000000;
}
kvm_close(kt);
clock_initialise();
lcl_RegisterSystemDrivers(read_frequency, set_frequency,
accrue_offset, apply_step_offset,
get_offset_correction,
NULL /* set_leap */);
}
/* ================================================== */
void
SYS_NetBSD_Finalise(void)
{
clock_finalise();
}
/* ================================================== */
#endif /* __NetBSD__ */