The daemon transmit timestamps are precompensated for the time it takes to generate a MAC using a symmetric key (as measured on chronyd start) and also an average round-trip time of the Samba signing of MS-SNTP responses. This improves accuracy of the transmit timestamp, but it has some issues. The correction has a random error which is changing over time due to variable CPU frequency, system load, migration to a different machine, etc. If the measured delay is too large, the correction may cause the transmit timestamp to be later than the actual transmission. Also, the delay is measured for a packet of a minimal length with no extension fields, and there is no support for NTS. Drop the precompensation in favor of the interleaved mode, which now avoids the authentication delay even when no kernel/hardware timestamps are available.
173 lines
4.1 KiB
C
173 lines
4.1 KiB
C
/*
|
|
**********************************************************************
|
|
* Copyright (C) Miroslav Lichvar 2017
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
**********************************************************************
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include "test.h"
|
|
|
|
#if defined(FEAT_NTP) || defined(FEAT_CMDMON)
|
|
|
|
#include <keys.c>
|
|
|
|
#define KEYS 100
|
|
#define KEYFILE "keys.test-keys"
|
|
|
|
static
|
|
uint32_t write_random_key(FILE *f)
|
|
{
|
|
const char *type, *prefix;
|
|
char key[128];
|
|
uint32_t id;
|
|
int i, length;
|
|
|
|
length = random() % sizeof (key) + 1;
|
|
length = MAX(length, 4);
|
|
prefix = random() % 2 ? "HEX:" : "";
|
|
|
|
switch (random() % 8) {
|
|
#ifdef FEAT_SECHASH
|
|
case 0:
|
|
type = "SHA1";
|
|
break;
|
|
case 1:
|
|
type = "SHA256";
|
|
break;
|
|
case 2:
|
|
type = "SHA384";
|
|
break;
|
|
case 3:
|
|
type = "SHA512";
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_CMAC
|
|
case 4:
|
|
type = "AES128";
|
|
length = prefix[0] == '\0' ? 8 : 16;
|
|
break;
|
|
case 5:
|
|
type = "AES256";
|
|
length = prefix[0] == '\0' ? 16 : 32;
|
|
break;
|
|
#endif
|
|
case 6:
|
|
type = "MD5";
|
|
break;
|
|
default:
|
|
type = "";
|
|
}
|
|
|
|
UTI_GetRandomBytes(&id, sizeof (id));
|
|
UTI_GetRandomBytes(key, length);
|
|
|
|
fprintf(f, "%u %s %s", id, type, prefix);
|
|
for (i = 0; i < length; i++)
|
|
fprintf(f, "%02hhX", key[i]);
|
|
fprintf(f, "\n");
|
|
|
|
return id;
|
|
}
|
|
|
|
static void
|
|
generate_key_file(const char *name, uint32_t *keys)
|
|
{
|
|
FILE *f;
|
|
int i;
|
|
|
|
f = fopen(name, "w");
|
|
TEST_CHECK(f);
|
|
for (i = 0; i < KEYS; i++)
|
|
keys[i] = write_random_key(f);
|
|
fclose(f);
|
|
}
|
|
|
|
void
|
|
test_unit(void)
|
|
{
|
|
int i, j, data_len, auth_len, type, bits;
|
|
uint32_t keys[KEYS], key;
|
|
unsigned char data[100], auth[MAX_HASH_LENGTH];
|
|
char conf[][100] = {
|
|
"keyfile "KEYFILE
|
|
};
|
|
|
|
CNF_Initialise(0, 0);
|
|
for (i = 0; i < sizeof conf / sizeof conf[0]; i++)
|
|
CNF_ParseLine(NULL, i + 1, conf[i]);
|
|
|
|
generate_key_file(KEYFILE, keys);
|
|
KEY_Initialise();
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
DEBUG_LOG("iteration %d", i);
|
|
|
|
if (i) {
|
|
generate_key_file(KEYFILE, keys);
|
|
KEY_Reload();
|
|
}
|
|
|
|
UTI_GetRandomBytes(data, sizeof (data));
|
|
|
|
for (j = 0; j < KEYS; j++) {
|
|
TEST_CHECK(KEY_KeyKnown(keys[j]));
|
|
TEST_CHECK(KEY_GetAuthLength(keys[j]) >= 16);
|
|
|
|
data_len = random() % (sizeof (data) + 1);
|
|
auth_len = KEY_GenerateAuth(keys[j], data, data_len, auth, sizeof (auth));
|
|
TEST_CHECK(auth_len >= 16);
|
|
|
|
TEST_CHECK(KEY_CheckAuth(keys[j], data, data_len, auth, auth_len, auth_len));
|
|
|
|
if (j > 0 && keys[j - 1] != keys[j])
|
|
TEST_CHECK(!KEY_CheckAuth(keys[j - 1], data, data_len, auth, auth_len, auth_len));
|
|
|
|
auth_len = random() % auth_len + 1;
|
|
if (auth_len < MAX_HASH_LENGTH)
|
|
auth[auth_len]++;
|
|
TEST_CHECK(KEY_CheckAuth(keys[j], data, data_len, auth, auth_len, auth_len));
|
|
|
|
auth[auth_len - 1]++;
|
|
TEST_CHECK(!KEY_CheckAuth(keys[j], data, data_len, auth, auth_len, auth_len));
|
|
|
|
TEST_CHECK(KEY_GetKeyInfo(keys[j], &type, &bits));
|
|
TEST_CHECK(type > 0 && bits > 0);
|
|
}
|
|
|
|
for (j = 0; j < 1000; j++) {
|
|
UTI_GetRandomBytes(&key, sizeof (key));
|
|
if (KEY_KeyKnown(key))
|
|
continue;
|
|
TEST_CHECK(!KEY_GetKeyInfo(key, &type, &bits));
|
|
TEST_CHECK(!KEY_GenerateAuth(key, data, data_len, auth, sizeof (auth)));
|
|
TEST_CHECK(!KEY_CheckAuth(key, data, data_len, auth, auth_len, auth_len));
|
|
}
|
|
}
|
|
|
|
unlink(KEYFILE);
|
|
|
|
KEY_Finalise();
|
|
CNF_Finalise();
|
|
HSH_Finalise();
|
|
}
|
|
#else
|
|
void
|
|
test_unit(void)
|
|
{
|
|
TEST_REQUIRE(0);
|
|
}
|
|
#endif
|