chrony/wrap_adjtimex.c
Miroslav Lichvar ec4542bbe4 sys: convert Linux driver to use generic offset functions
Strip all slewing code (adjtime(), freq locked nano PLL, fast tick
slewing) from the Linux driver and use the new generic frequency only
slewing instead. The advantages include stable clock control with very
short update intervals, good control of the slewing frequency, cheap
cooking of raw time stamps and unlimited frequency offset.
2014-05-20 17:14:33 +02:00

218 lines
5.3 KiB
C

/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2002
* Copyright (C) Miroslav Lichvar 2011-2012
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
This is a wrapper around the Linux adjtimex system call. It isolates the
inclusion of <linux/adjtimex.h> from the need to include other header files,
many of which conflict with those in <linux/...> on some recent distributions
(as of Jul 2000) using kernels around 2.2.16 onwards.
*/
#include "config.h"
#include "chrony_timex.h"
#include "wrap_adjtimex.h"
static int status = 0;
int
TMX_ResetOffset(void)
{
struct timex txc;
/* Reset adjtime() offset */
txc.modes = ADJ_OFFSET_SINGLESHOT;
txc.offset = 0;
if (adjtimex(&txc) < 0)
return -1;
/* Reset PLL offset */
txc.modes = ADJ_OFFSET | ADJ_STATUS;
txc.status = STA_PLL;
txc.offset = 0;
if (adjtimex(&txc) < 0)
return -1;
/* Set status back */
txc.modes = ADJ_STATUS;
txc.modes = status;
if (adjtimex(&txc) < 0)
return -1;
return 0;
}
int
TMX_SetFrequency(double *freq, long tick)
{
struct timex txc;
txc.modes = ADJ_TICK | ADJ_FREQUENCY | ADJ_STATUS;
txc.freq = (long)(*freq * (double)(1 << SHIFT_USEC));
*freq = txc.freq / (double)(1 << SHIFT_USEC);
txc.tick = tick;
txc.status = status;
if (!(status & STA_UNSYNC)) {
/* maxerror has to be reset periodically to prevent kernel
from enabling UNSYNC flag */
txc.modes |= ADJ_MAXERROR;
txc.maxerror = 0;
}
return adjtimex(&txc);
}
int
TMX_GetFrequency(double *freq, long *tick)
{
struct timex txc;
int result;
txc.modes = 0; /* pure read */
result = adjtimex(&txc);
*freq = txc.freq / (double)(1 << SHIFT_USEC);
*tick = txc.tick;
return result;
}
int
TMX_ReadCurrentParams(struct tmx_params *params)
{
struct timex txc;
int result;
txc.modes = 0; /* pure read */
result = adjtimex(&txc);
params->tick = txc.tick;
params->offset = txc.offset;
params->freq = txc.freq;
params->dfreq = txc.freq / (double)(1 << SHIFT_USEC);
params->maxerror = txc.maxerror;
params->esterror = txc.esterror;
params->sta_pll = !!(txc.status & STA_PLL);
params->sta_ppsfreq = !!(txc.status & STA_PPSFREQ);
params->sta_ppstime = !!(txc.status & STA_PPSTIME);
params->sta_fll = !!(txc.status & STA_FLL);
params->sta_ins = !!(txc.status & STA_INS);
params->sta_del = !!(txc.status & STA_DEL);
params->sta_unsync = !!(txc.status & STA_UNSYNC);
params->sta_freqhold = !!(txc.status & STA_FREQHOLD);
params->sta_ppssignal = !!(txc.status & STA_PPSSIGNAL);
params->sta_ppsjitter = !!(txc.status & STA_PPSJITTER);
params->sta_ppswander = !!(txc.status & STA_PPSWANDER);
params->sta_ppserror = !!(txc.status & STA_PPSERROR);
params->sta_clockerr = !!(txc.status & STA_CLOCKERR);
params->constant = txc.constant;
params->precision = txc.precision;
params->tolerance = txc.tolerance;
params->ppsfreq = txc.ppsfreq;
params->jitter = txc.jitter;
params->shift = txc.shift;
params->stabil = txc.stabil;
params->jitcnt = txc.jitcnt;
params->calcnt = txc.calcnt;
params->errcnt = txc.errcnt;
params->stbcnt = txc.stbcnt;
return result;
}
int
TMX_SetLeap(int leap)
{
struct timex txc;
status &= ~(STA_INS | STA_DEL);
if (leap > 0) {
status |= STA_INS;
} else if (leap < 0) {
status |= STA_DEL;
}
txc.modes = ADJ_STATUS;
txc.status = status;
return adjtimex(&txc);
}
int TMX_SetSync(int sync)
{
struct timex txc;
if (sync) {
status &= ~STA_UNSYNC;
} else {
status |= STA_UNSYNC;
}
txc.modes = ADJ_STATUS;
txc.status = status;
return adjtimex(&txc);
}
int
TMX_TestStepOffset(void)
{
struct timex txc;
/* Zero maxerror and check it's reset to a maximum after ADJ_SETOFFSET.
This seems to be the only way how to verify that the kernel really
supports the ADJ_SETOFFSET mode as it doesn't return an error on unknown
mode. */
txc.modes = ADJ_MAXERROR;
txc.maxerror = 0;
if (adjtimex(&txc) < 0 || txc.maxerror != 0)
return -1;
txc.modes = ADJ_SETOFFSET | ADJ_NANO;
txc.time.tv_sec = 0;
txc.time.tv_usec = 0;
if (adjtimex(&txc) < 0 || txc.maxerror < 100000)
return -1;
return 0;
}
int
TMX_ApplyStepOffset(double offset)
{
struct timex txc;
txc.modes = ADJ_SETOFFSET | ADJ_NANO;
if (offset >= 0) {
txc.time.tv_sec = offset;
} else {
txc.time.tv_sec = offset - 1;
}
txc.time.tv_usec = 1.0e9 * (offset - txc.time.tv_sec);
return adjtimex(&txc);
}