chrony/clientlog.c
Miroslav Lichvar f6ed7844e1 Free allocated memory on exit
This should reduce the number of possible memory leaks reported by
valgrind. The remaining reported leaks are sched tqe allocation, async
DNS instance allocation, cmdmon response/timestamp cell allocation, and
clientlog subnet allocation.
2014-09-25 10:57:55 +02:00

513 lines
12 KiB
C

/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2003
* Copyright (C) Miroslav Lichvar 2009
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
This module keeps a count of the number of successful accesses by
clients, and the times of the last accesses.
This can be used for status reporting, and (in the case of a
server), if it needs to know which clients have made use of its data
recently.
*/
#include "config.h"
#include "sysincl.h"
#include "clientlog.h"
#include "conf.h"
#include "memory.h"
#include "reports.h"
#include "util.h"
#include "logging.h"
/* Number of bits of address per layer of the table. This value has
been chosen on the basis that a server will predominantly be serving
a lot of hosts in a few subnets, rather than a few hosts scattered
across many subnets. */
#define NBITS 8
/* Number of entries in each subtable */
#define TABLE_SIZE (1UL<<NBITS)
typedef struct _Node {
IPAddr ip_addr;
unsigned long client_hits;
unsigned long peer_hits;
unsigned long cmd_hits_bad;
unsigned long cmd_hits_normal;
unsigned long cmd_hits_auth;
time_t last_ntp_hit;
time_t last_cmd_hit;
} Node;
typedef struct _Subnet {
void *entry[TABLE_SIZE];
} Subnet;
/* ================================================== */
/* Table for the IPv4 class A subnet */
static Subnet top_subnet4;
/* Table for IPv6 */
static Subnet top_subnet6;
/* Table containing pointers directly to all nodes that have been
allocated. */
static Node **nodes = NULL;
/* Number of nodes actually in the table. */
static int n_nodes = 0;
/* Number of entries for which the table has been sized. */
static int max_nodes = 0;
/* Flag indicating whether facility is turned on or not */
static int active = 0;
/* Flag indicating whether memory allocation limit has been reached
and no new nodes or subnets should be allocated */
static int alloc_limit_reached;
static unsigned long alloc_limit;
static unsigned long alloced;
/* ================================================== */
static void
split_ip6(IPAddr *ip, uint32_t *dst)
{
int i;
for (i = 0; i < 4; i++)
dst[i] = ip->addr.in6[i * 4 + 0] << 24 |
ip->addr.in6[i * 4 + 1] << 16 |
ip->addr.in6[i * 4 + 2] << 8 |
ip->addr.in6[i * 4 + 3];
}
/* ================================================== */
inline static uint32_t
get_subnet(uint32_t *addr, unsigned int where)
{
int off;
off = where / 32;
where %= 32;
return (addr[off] >> (32 - NBITS - where)) & ((1UL << NBITS) - 1);
}
/* ================================================== */
static void
clear_subnet(Subnet *subnet)
{
int i;
for (i=0; i<TABLE_SIZE; i++) {
subnet->entry[i] = NULL;
}
}
/* ================================================== */
static void
clear_node(Node *node)
{
node->client_hits = 0;
node->peer_hits = 0;
node->cmd_hits_auth = 0;
node->cmd_hits_normal = 0;
node->cmd_hits_bad = 0;
node->last_ntp_hit = (time_t) 0;
node->last_cmd_hit = (time_t) 0;
}
/* ================================================== */
void
CLG_Initialise(void)
{
clear_subnet(&top_subnet4);
clear_subnet(&top_subnet6);
if (CNF_GetNoClientLog()) {
active = 0;
} else {
active = 1;
}
nodes = NULL;
max_nodes = 0;
n_nodes = 0;
alloced = 0;
alloc_limit = CNF_GetClientLogLimit();
alloc_limit_reached = 0;
}
/* ================================================== */
void
CLG_Finalise(void)
{
int i;
for (i = 0; i < n_nodes; i++)
Free(nodes[i]);
Free(nodes);
}
/* ================================================== */
static void check_alloc_limit() {
if (alloc_limit_reached)
return;
if (alloced >= alloc_limit) {
LOG(LOGS_WARN, LOGF_ClientLog, "Client log memory limit reached");
alloc_limit_reached = 1;
}
}
/* ================================================== */
static void
create_subnet(Subnet *parent_subnet, int the_entry)
{
parent_subnet->entry[the_entry] = (void *) MallocNew(Subnet);
clear_subnet((Subnet *) parent_subnet->entry[the_entry]);
alloced += sizeof (Subnet);
check_alloc_limit();
}
/* ================================================== */
static void
create_node(Subnet *parent_subnet, int the_entry)
{
Node *new_node;
new_node = MallocNew(Node);
parent_subnet->entry[the_entry] = (void *) new_node;
clear_node(new_node);
alloced += sizeof (Node);
if (n_nodes == max_nodes) {
if (nodes) {
assert(max_nodes > 0);
max_nodes *= 2;
nodes = ReallocArray(Node *, max_nodes, nodes);
} else {
assert(max_nodes == 0);
max_nodes = 16;
nodes = MallocArray(Node *, max_nodes);
}
alloced += sizeof (Node *) * (max_nodes - n_nodes);
}
nodes[n_nodes++] = (Node *) new_node;
check_alloc_limit();
}
/* ================================================== */
/* Recursively seek out the Node entry for a particular address,
expanding subnet tables and node entries as we go if necessary. */
static void *
find_subnet(Subnet *subnet, uint32_t *addr, int addr_len, int bits_consumed)
{
uint32_t this_subnet;
this_subnet = get_subnet(addr, bits_consumed);
bits_consumed += NBITS;
if (bits_consumed < 32 * addr_len) {
if (!subnet->entry[this_subnet]) {
if (alloc_limit_reached)
return NULL;
create_subnet(subnet, this_subnet);
}
return find_subnet((Subnet *) subnet->entry[this_subnet], addr, addr_len, bits_consumed);
} else {
if (!subnet->entry[this_subnet]) {
if (alloc_limit_reached)
return NULL;
create_node(subnet, this_subnet);
}
return subnet->entry[this_subnet];
}
}
/* ================================================== */
/* Search for the record for a particular subnet, but return NULL if
one of the parents does not exist - never open a node out */
static void *
find_subnet_dont_open(Subnet *subnet, uint32_t *addr, int addr_len, int bits_consumed)
{
uint32_t this_subnet;
if (bits_consumed >= 32 * addr_len) {
return subnet;
} else {
this_subnet = get_subnet(addr, bits_consumed);
bits_consumed += NBITS;
if (!subnet->entry[this_subnet]) {
return NULL;
} else {
return find_subnet_dont_open((Subnet *) subnet->entry[this_subnet], addr, addr_len, bits_consumed);
}
}
}
/* ================================================== */
void
CLG_LogNTPClientAccess (IPAddr *client, time_t now)
{
uint32_t ip6[4];
Node *node;
if (active) {
switch (client->family) {
case IPADDR_INET4:
node = (Node *) find_subnet(&top_subnet4, &client->addr.in4, 1, 0);
break;
case IPADDR_INET6:
split_ip6(client, ip6);
node = (Node *) find_subnet(&top_subnet6, ip6, 4, 0);
break;
default:
assert(0);
}
if (node == NULL)
return;
node->ip_addr = *client;
++node->client_hits;
node->last_ntp_hit = now;
}
}
/* ================================================== */
void
CLG_LogNTPPeerAccess(IPAddr *client, time_t now)
{
uint32_t ip6[4];
Node *node;
if (active) {
switch (client->family) {
case IPADDR_INET4:
node = (Node *) find_subnet(&top_subnet4, &client->addr.in4, 1, 0);
break;
case IPADDR_INET6:
split_ip6(client, ip6);
node = (Node *) find_subnet(&top_subnet6, ip6, 4, 0);
break;
default:
assert(0);
}
if (node == NULL)
return;
node->ip_addr = *client;
++node->peer_hits;
node->last_ntp_hit = now;
}
}
/* ================================================== */
void
CLG_LogCommandAccess(IPAddr *client, CLG_Command_Type type, time_t now)
{
uint32_t ip6[4];
Node *node;
if (active) {
switch (client->family) {
case IPADDR_INET4:
node = (Node *) find_subnet(&top_subnet4, &client->addr.in4, 1, 0);
break;
case IPADDR_INET6:
split_ip6(client, ip6);
node = (Node *) find_subnet(&top_subnet6, ip6, 4, 0);
break;
default:
assert(0);
}
if (node == NULL)
return;
node->ip_addr = *client;
node->last_cmd_hit = now;
switch (type) {
case CLG_CMD_AUTH:
++node->cmd_hits_auth;
break;
case CLG_CMD_NORMAL:
++node->cmd_hits_normal;
break;
case CLG_CMD_BAD_PKT:
++node->cmd_hits_bad;
break;
default:
assert(0);
break;
}
}
}
/* ================================================== */
CLG_Status
CLG_GetSubnetBitmap(IPAddr *subnet, int bits, CLG_Bitmap result)
{
Subnet *s;
uint32_t ip6[4];
unsigned long i;
unsigned long word, bit, mask;
if (bits >= 0 && bits % 8 == 0) {
memset (result, 0, TABLE_SIZE/8);
if (active) {
switch (subnet->family) {
case IPADDR_INET4:
if (bits >= 32)
return CLG_BADSUBNET;
s = find_subnet_dont_open(&top_subnet4, &subnet->addr.in4, 1, 32 - bits);
break;
case IPADDR_INET6:
if (bits >= 128)
return CLG_BADSUBNET;
split_ip6(subnet, ip6);
s = find_subnet_dont_open(&top_subnet6, ip6, 4, 128 - bits);
break;
default:
return CLG_BADSUBNET;
}
if (s) {
for (i=0; i<256; i++) {
if (s->entry[i]) {
word = i / 32;
bit = i % 32;
mask = 1UL << bit;
result[word] |= mask;
}
}
return CLG_SUCCESS;
} else {
return CLG_EMPTYSUBNET;
}
} else {
return CLG_INACTIVE;
}
} else {
return CLG_BADSUBNET;
}
}
/* ================================================== */
CLG_Status
CLG_GetClientAccessReportByIP(IPAddr *ip, RPT_ClientAccess_Report *report, time_t now)
{
uint32_t ip6[4];
Node *node;
if (!active) {
return CLG_INACTIVE;
} else {
switch (ip->family) {
case IPADDR_INET4:
node = (Node *) find_subnet_dont_open(&top_subnet4, &ip->addr.in4, 1, 0);
break;
case IPADDR_INET6:
split_ip6(ip, ip6);
node = (Node *) find_subnet_dont_open(&top_subnet6, ip6, 4, 0);
break;
default:
return CLG_EMPTYSUBNET;
}
if (!node) {
return CLG_EMPTYSUBNET;
} else {
report->client_hits = node->client_hits;
report->peer_hits = node->peer_hits;
report->cmd_hits_auth = node->cmd_hits_auth;
report->cmd_hits_normal = node->cmd_hits_normal;
report->cmd_hits_bad = node->cmd_hits_bad;
report->last_ntp_hit_ago = now - node->last_ntp_hit;
report->last_cmd_hit_ago = now - node->last_cmd_hit;
return CLG_SUCCESS;
}
}
}
/* ================================================== */
CLG_Status
CLG_GetClientAccessReportByIndex(int index, RPT_ClientAccessByIndex_Report *report,
time_t now, unsigned long *n_indices)
{
Node *node;
*n_indices = n_nodes;
if (!active) {
return CLG_INACTIVE;
} else {
if ((index < 0) || (index >= n_nodes)) {
return CLG_INDEXTOOLARGE;
}
node = nodes[index];
report->ip_addr = node->ip_addr;
report->client_hits = node->client_hits;
report->peer_hits = node->peer_hits;
report->cmd_hits_auth = node->cmd_hits_auth;
report->cmd_hits_normal = node->cmd_hits_normal;
report->cmd_hits_bad = node->cmd_hits_bad;
report->last_ntp_hit_ago = now - node->last_ntp_hit;
report->last_cmd_hit_ago = now - node->last_cmd_hit;
return CLG_SUCCESS;
}
}