chrony/util.c
2009-10-28 17:53:10 +01:00

542 lines
14 KiB
C

/*
$Header: /cvs/src/chrony/util.c,v 1.22 2003/09/28 22:21:17 richard Exp $
=======================================================================
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2003
* Copyright (C) Miroslav Lichvar 2009
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
**********************************************************************
=======================================================================
Various utility functions
*/
#include "sysincl.h"
#include "util.h"
#include "md5.h"
/* ================================================== */
INLINE_STATIC void
UTI_TimevalToDouble(struct timeval *a, double *b)
{
*b = (double)(a->tv_sec) + 1.0e-6 * (double)(a->tv_usec);
}
/* ================================================== */
INLINE_STATIC void
UTI_DoubleToTimeval(double a, struct timeval *b)
{
long int_part, frac_part;
int_part = (long)(a);
frac_part = (long)(0.5 + 1.0e6 * (a - (double)(int_part)));
b->tv_sec = int_part;
b->tv_usec = frac_part;
UTI_NormaliseTimeval(b);
}
/* ================================================== */
INLINE_STATIC int
UTI_CompareTimevals(struct timeval *a, struct timeval *b)
{
if (a->tv_sec < b->tv_sec) {
return -1;
} else if (a->tv_sec > b->tv_sec) {
return +1;
} else {
if (a->tv_usec < b->tv_usec) {
return -1;
} else if (a->tv_usec > b->tv_usec) {
return +1;
} else {
return 0;
}
}
}
/* ================================================== */
INLINE_STATIC void
UTI_NormaliseTimeval(struct timeval *x)
{
/* Reduce tv_usec to within +-1000000 of zero. JGH */
if ((x->tv_usec >= 1000000) || (x->tv_usec <= -1000000)) {
x->tv_sec += x->tv_usec/1000000;
x->tv_usec = x->tv_usec%1000000;
}
/* Make tv_usec positive. JGH */
if (x->tv_usec < 0) {
--x->tv_sec;
x->tv_usec += 1000000;
}
}
/* ================================================== */
INLINE_STATIC void
UTI_DiffTimevals(struct timeval *result,
struct timeval *a,
struct timeval *b)
{
result->tv_sec = a->tv_sec - b->tv_sec;
result->tv_usec = a->tv_usec - b->tv_usec;
/* Correct microseconds field to bring it into the range
(0,1000000) */
UTI_NormaliseTimeval(result); /* JGH */
return;
}
/* ================================================== */
/* Calculate result = a - b and return as a double */
INLINE_STATIC void
UTI_DiffTimevalsToDouble(double *result,
struct timeval *a,
struct timeval *b)
{
*result = (double)(a->tv_sec - b->tv_sec) +
(double)(a->tv_usec - b->tv_usec) * 1.0e-6;
}
/* ================================================== */
INLINE_STATIC void
UTI_AddDoubleToTimeval(struct timeval *start,
double increment,
struct timeval *end)
{
long int_part, frac_part;
/* Don't want to do this by using (long)(1000000 * increment), since
that will only cope with increments up to +/- 2148 seconds, which
is too marginal here. */
int_part = (long) increment;
frac_part = (long) (0.5 + 1.0e6 * (increment - (double)int_part));
end->tv_sec = int_part + start->tv_sec;
end->tv_usec = frac_part + start->tv_usec;
UTI_NormaliseTimeval(end);
}
/* ================================================== */
/* Calculate the average and difference (as a double) of two timevals */
INLINE_STATIC void
UTI_AverageDiffTimevals (struct timeval *earlier,
struct timeval *later,
struct timeval *average,
double *diff)
{
struct timeval tvdiff;
struct timeval tvhalf;
UTI_DiffTimevals(&tvdiff, later, earlier);
*diff = (double)tvdiff.tv_sec + 1.0e-6 * (double)tvdiff.tv_usec;
if (*diff < 0.0) {
/* Either there's a bug elsewhere causing 'earlier' and 'later' to
be backwards, or something wierd has happened. Maybe when we
change the frequency on Linux? */
/* This seems to be fairly benign, so don't bother logging it */
#if 0
LOG(LOGS_INFO, LOGF_Util, "Earlier=[%s] Later=[%s]",
UTI_TimevalToString(earlier), UTI_TimevalToString(later));
#endif
/* Assume the required behaviour is to treat it as zero */
*diff = 0.0;
}
tvhalf.tv_sec = tvdiff.tv_sec / 2;
tvhalf.tv_usec = tvdiff.tv_usec / 2 + (tvdiff.tv_sec % 2) * 500000; /* JGH */
average->tv_sec = earlier->tv_sec + tvhalf.tv_sec;
average->tv_usec = earlier->tv_usec + tvhalf.tv_usec;
/* Bring into range */
UTI_NormaliseTimeval(average);
}
/* ================================================== */
#define POOL_ENTRIES 16
#define BUFFER_LENGTH 64
static char buffer_pool[POOL_ENTRIES][BUFFER_LENGTH];
static int pool_ptr = 0;
#define NEXT_BUFFER (buffer_pool[pool_ptr = ((pool_ptr + 1) % POOL_ENTRIES)])
/* ================================================== */
/* Convert a timeval into a temporary string, largely for diagnostic
display */
char *
UTI_TimevalToString(struct timeval *tv)
{
char buffer[64], *result;
struct tm stm;
stm = *gmtime((time_t *) &(tv->tv_sec));
strftime(buffer, sizeof(buffer), "%a %x %X", &stm);
result = NEXT_BUFFER;
snprintf(result, BUFFER_LENGTH, "%s.%06ld", buffer, (unsigned long)(tv->tv_usec));
return result;
}
/* ================================================== */
#define JAN_1970 0x83aa7e80UL
inline static void
int64_to_timeval(NTP_int64 *src,
struct timeval *dest)
{
dest->tv_sec = ntohl(src->hi) - JAN_1970;
/* Until I invent a slick way to do this, just do it the obvious way */
dest->tv_usec = (int)(0.5 + (double)(ntohl(src->lo)) / 4294.967296);
}
/* ================================================== */
/* Convert an NTP timestamp into a temporary string, largely
for diagnostic display */
char *
UTI_TimestampToString(NTP_int64 *ts)
{
struct timeval tv;
int64_to_timeval(ts, &tv);
return UTI_TimevalToString(&tv);
}
/* ================================================== */
char *
UTI_RefidToString(unsigned long ref_id)
{
unsigned int a, b, c, d;
char *result;
a = (ref_id>>24) & 0xff;
b = (ref_id>>16) & 0xff;
c = (ref_id>> 8) & 0xff;
d = (ref_id>> 0) & 0xff;
result = NEXT_BUFFER;
snprintf(result, BUFFER_LENGTH, "%c%c%c%c", a, b, c, d);
return result;
}
/* ================================================== */
char *
UTI_IPToDottedQuad(unsigned long ip)
{
unsigned long a, b, c, d;
char *result;
a = (ip>>24) & 0xff;
b = (ip>>16) & 0xff;
c = (ip>> 8) & 0xff;
d = (ip>> 0) & 0xff;
result = NEXT_BUFFER;
snprintf(result, BUFFER_LENGTH, "%ld.%ld.%ld.%ld", a, b, c, d);
return result;
}
/* ================================================== */
char *
UTI_IPToString(IPAddr *addr)
{
unsigned long a, b, c, d, ip;
uint8_t *ip6;
char *result;
result = NEXT_BUFFER;
switch (addr->family) {
case IPADDR_UNSPEC:
snprintf(result, BUFFER_LENGTH, "[UNSPEC]");
break;
case IPADDR_INET4:
ip = addr->addr.in4;
a = (ip>>24) & 0xff;
b = (ip>>16) & 0xff;
c = (ip>> 8) & 0xff;
d = (ip>> 0) & 0xff;
snprintf(result, BUFFER_LENGTH, "%ld.%ld.%ld.%ld", a, b, c, d);
break;
case IPADDR_INET6:
ip6 = addr->addr.in6;
#ifdef HAVE_IPV6
inet_ntop(AF_INET6, ip6, result, BUFFER_LENGTH);
#else
snprintf(result, BUFFER_LENGTH, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x",
ip6[0], ip6[1], ip6[2], ip6[3], ip6[4], ip6[5], ip6[6], ip6[7],
ip6[8], ip6[9], ip6[10], ip6[11], ip6[12], ip6[13], ip6[14], ip6[15]);
#endif
break;
default:
snprintf(result, BUFFER_LENGTH, "[UNKNOWN]");
}
return result;
}
/* ================================================== */
int
UTI_StringToIP(const char *addr, IPAddr *ip)
{
#ifdef HAVE_IPV6
struct in_addr in4;
struct in6_addr in6;
if (inet_pton(AF_INET, addr, &in4) > 0) {
ip->family = IPADDR_INET4;
ip->addr.in4 = ntohl(in4.s_addr);
return 1;
}
if (inet_pton(AF_INET6, addr, &in6) > 0) {
ip->family = IPADDR_INET6;
memcpy(ip->addr.in6, in6.s6_addr, sizeof (ip->addr.in6));
return 1;
}
#else
unsigned long a, b, c, d, n;
n = sscanf(addr, "%lu.%lu.%lu.%lu", &a, &b, &c, &d);
if (n == 4) {
ip->family = IPADDR_INET4;
ip->addr.in4 = ((a & 0xff) << 24) | ((b & 0xff) << 16) |
((c & 0xff) << 8) | (d & 0xff);
return 1;
}
#endif
return 0;
}
/* ================================================== */
unsigned long
UTI_IPToRefid(IPAddr *ip)
{
MD5_CTX ctx;
switch (ip->family) {
case IPADDR_INET4:
return ip->addr.in4;
case IPADDR_INET6:
MD5Init(&ctx);
MD5Update(&ctx, (unsigned const char *) ip->addr.in6, sizeof (ip->addr.in6));
MD5Final(&ctx);
return ctx.digest[0] << 24 | ctx.digest[1] << 16 | ctx.digest[2] << 8 | ctx.digest[3];
}
return 0;
}
/* ================================================== */
void
UTI_IPHostToNetwork(IPAddr *src, IPAddr *dest)
{
/* Don't send uninitialized bytes over network */
memset(dest, 0, sizeof (IPAddr));
dest->family = htons(src->family);
switch (src->family) {
case IPADDR_INET4:
dest->addr.in4 = htonl(src->addr.in4);
break;
case IPADDR_INET6:
memcpy(dest->addr.in6, src->addr.in6, sizeof (dest->addr.in6));
break;
}
}
/* ================================================== */
void
UTI_IPNetworkToHost(IPAddr *src, IPAddr *dest)
{
dest->family = ntohs(src->family);
switch (dest->family) {
case IPADDR_INET4:
dest->addr.in4 = ntohl(src->addr.in4);
break;
case IPADDR_INET6:
memcpy(dest->addr.in6, src->addr.in6, sizeof (dest->addr.in6));
break;
}
}
/* ================================================== */
int
UTI_CompareIPs(IPAddr *a, IPAddr *b, IPAddr *mask)
{
int i, d;
if (a->family != b->family)
return a->family - b->family;
if (mask && mask->family != b->family)
mask = NULL;
switch (a->family) {
case IPADDR_UNSPEC:
return 0;
case IPADDR_INET4:
if (mask)
return (a->addr.in4 & mask->addr.in4) - (b->addr.in4 & mask->addr.in4);
else
return a->addr.in4 - b->addr.in4;
case IPADDR_INET6:
for (i = 0, d = 0; !d && i < 16; i++) {
if (mask)
d = (a->addr.in6[i] & mask->addr.in6[i]) -
(b->addr.in6[i] & mask->addr.in6[i]);
else
d = a->addr.in6[i] - b->addr.in6[i];
}
return d;
}
return 0;
}
/* ================================================== */
char *
UTI_TimeToLogForm(time_t t)
{
struct tm stm;
char *result;
result = NEXT_BUFFER;
stm = *gmtime(&t);
strftime(result, BUFFER_LENGTH, "%Y-%m-%d %H:%M:%S", &stm);
return result;
}
/* ================================================== */
void
UTI_AdjustTimeval(struct timeval *old_tv, struct timeval *when, struct timeval *new_tv, double dfreq, double doffset)
{
double elapsed, delta_time;
UTI_DiffTimevalsToDouble(&elapsed, when, old_tv);
delta_time = elapsed * dfreq - doffset;
UTI_AddDoubleToTimeval(old_tv, delta_time, new_tv);
}
/* ================================================== */
/* Seconds part of RFC1305 timestamp correponding to the origin of the
struct timeval format. */
#define JAN_1970 0x83aa7e80UL
void
UTI_TimevalToInt64(struct timeval *src,
NTP_int64 *dest)
{
unsigned long usec = src->tv_usec;
unsigned long sec = src->tv_sec;
/* Recognize zero as a special case - it always signifies
an 'unknown' value */
if (!usec && !sec) {
dest->hi = dest->lo = 0;
} else {
dest->hi = htonl(src->tv_sec + JAN_1970);
/* This formula gives an error of about 0.1us worst case */
dest->lo = htonl(4295 * usec - (usec>>5) - (usec>>9));
}
}
/* ================================================== */
void
UTI_Int64ToTimeval(NTP_int64 *src,
struct timeval *dest)
{
/* As yet, there is no need to check for zero - all processing that
has to detect that case is in the NTP layer */
dest->tv_sec = ntohl(src->hi) - JAN_1970;
/* Until I invent a slick way to do this, just do it the obvious way */
dest->tv_usec = (int)(0.5 + (double)(ntohl(src->lo)) / 4294.967296);
}
/* ================================================== */
void
UTI_TimevalNetworkToHost(Timeval *src, struct timeval *dest)
{
uint32_t sec_low, sec_high;
dest->tv_usec = ntohl(src->tv_usec);
sec_high = ntohl(src->tv_sec_high);
sec_low = ntohl(src->tv_sec_low);
/* get the missing bits from current time when received timestamp
is only 32-bit */
if (sizeof (time_t) > 4 && sec_high == TV_NOHIGHSEC) {
struct timeval now;
struct timezone tz;
gettimeofday(&now, &tz);
sec_high = now.tv_sec >> 32;
}
dest->tv_sec = (time_t)sec_high << 16 << 16 | sec_low;
}
/* ================================================== */
void
UTI_TimevalHostToNetwork(struct timeval *src, Timeval *dest)
{
dest->tv_usec = htonl(src->tv_usec);
if (sizeof (time_t) > 4)
dest->tv_sec_high = htonl(src->tv_sec >> 32);
else
dest->tv_sec_high = htonl(TV_NOHIGHSEC);
dest->tv_sec_low = htonl(src->tv_sec);
}
/* ================================================== */