chrony/util.c
Miroslav Lichvar aec97397e8 local: check offset sanity before accumulation
Don't accept an offset that points to time before 1970 or outside the
interval to which is mapped NTP time.
2015-04-07 15:23:47 +02:00

812 lines
19 KiB
C

/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2003
* Copyright (C) Miroslav Lichvar 2009, 2012-2013
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Various utility functions
*/
#include "config.h"
#include "sysincl.h"
#include "util.h"
#include "hash.h"
/* ================================================== */
INLINE_STATIC void
UTI_TimevalToDouble(struct timeval *a, double *b)
{
*b = (double)(a->tv_sec) + 1.0e-6 * (double)(a->tv_usec);
}
/* ================================================== */
INLINE_STATIC void
UTI_DoubleToTimeval(double a, struct timeval *b)
{
long int_part, frac_part;
int_part = (long)(a);
frac_part = (long)(0.5 + 1.0e6 * (a - (double)(int_part)));
b->tv_sec = int_part;
b->tv_usec = frac_part;
UTI_NormaliseTimeval(b);
}
/* ================================================== */
INLINE_STATIC int
UTI_CompareTimevals(struct timeval *a, struct timeval *b)
{
if (a->tv_sec < b->tv_sec) {
return -1;
} else if (a->tv_sec > b->tv_sec) {
return +1;
} else {
if (a->tv_usec < b->tv_usec) {
return -1;
} else if (a->tv_usec > b->tv_usec) {
return +1;
} else {
return 0;
}
}
}
/* ================================================== */
INLINE_STATIC void
UTI_NormaliseTimeval(struct timeval *x)
{
/* Reduce tv_usec to within +-1000000 of zero. JGH */
if ((x->tv_usec >= 1000000) || (x->tv_usec <= -1000000)) {
x->tv_sec += x->tv_usec/1000000;
x->tv_usec = x->tv_usec%1000000;
}
/* Make tv_usec positive. JGH */
if (x->tv_usec < 0) {
--x->tv_sec;
x->tv_usec += 1000000;
}
}
/* ================================================== */
INLINE_STATIC void
UTI_DiffTimevals(struct timeval *result,
struct timeval *a,
struct timeval *b)
{
result->tv_sec = a->tv_sec - b->tv_sec;
result->tv_usec = a->tv_usec - b->tv_usec;
/* Correct microseconds field to bring it into the range
(0,1000000) */
UTI_NormaliseTimeval(result); /* JGH */
}
/* ================================================== */
/* Calculate result = a - b and return as a double */
INLINE_STATIC void
UTI_DiffTimevalsToDouble(double *result,
struct timeval *a,
struct timeval *b)
{
*result = (double)(a->tv_sec - b->tv_sec) +
(double)(a->tv_usec - b->tv_usec) * 1.0e-6;
}
/* ================================================== */
INLINE_STATIC void
UTI_AddDoubleToTimeval(struct timeval *start,
double increment,
struct timeval *end)
{
long int_part, frac_part;
/* Don't want to do this by using (long)(1000000 * increment), since
that will only cope with increments up to +/- 2148 seconds, which
is too marginal here. */
int_part = (long) increment;
increment = (increment - int_part) * 1.0e6;
frac_part = (long) (increment > 0.0 ? increment + 0.5 : increment - 0.5);
end->tv_sec = int_part + start->tv_sec;
end->tv_usec = frac_part + start->tv_usec;
UTI_NormaliseTimeval(end);
}
/* ================================================== */
/* Calculate the average and difference (as a double) of two timevals */
INLINE_STATIC void
UTI_AverageDiffTimevals (struct timeval *earlier,
struct timeval *later,
struct timeval *average,
double *diff)
{
struct timeval tvdiff;
struct timeval tvhalf;
UTI_DiffTimevals(&tvdiff, later, earlier);
*diff = (double)tvdiff.tv_sec + 1.0e-6 * (double)tvdiff.tv_usec;
if (*diff < 0.0) {
/* Either there's a bug elsewhere causing 'earlier' and 'later' to
be backwards, or something wierd has happened. Maybe when we
change the frequency on Linux? */
/* Assume the required behaviour is to treat it as zero */
*diff = 0.0;
}
tvhalf.tv_sec = tvdiff.tv_sec / 2;
tvhalf.tv_usec = tvdiff.tv_usec / 2 + (tvdiff.tv_sec % 2) * 500000; /* JGH */
average->tv_sec = earlier->tv_sec + tvhalf.tv_sec;
average->tv_usec = earlier->tv_usec + tvhalf.tv_usec;
/* Bring into range */
UTI_NormaliseTimeval(average);
}
/* ================================================== */
void
UTI_AddDiffToTimeval(struct timeval *a, struct timeval *b,
struct timeval *c, struct timeval *result)
{
double diff;
UTI_DiffTimevalsToDouble(&diff, a, b);
UTI_AddDoubleToTimeval(c, diff, result);
}
/* ================================================== */
#define POOL_ENTRIES 16
#define BUFFER_LENGTH 64
static char buffer_pool[POOL_ENTRIES][BUFFER_LENGTH];
static int pool_ptr = 0;
#define NEXT_BUFFER (buffer_pool[pool_ptr = ((pool_ptr + 1) % POOL_ENTRIES)])
/* ================================================== */
/* Convert a timeval into a temporary string, largely for diagnostic
display */
char *
UTI_TimevalToString(struct timeval *tv)
{
char *result;
result = NEXT_BUFFER;
#ifdef HAVE_LONG_TIME_T
snprintf(result, BUFFER_LENGTH, "%"PRId64".%06lu",
(int64_t)tv->tv_sec, (unsigned long)tv->tv_usec);
#else
snprintf(result, BUFFER_LENGTH, "%ld.%06lu",
(long)tv->tv_sec, (unsigned long)tv->tv_usec);
#endif
return result;
}
/* ================================================== */
/* Convert an NTP timestamp into a temporary string, largely
for diagnostic display */
char *
UTI_TimestampToString(NTP_int64 *ts)
{
struct timeval tv;
UTI_Int64ToTimeval(ts, &tv);
return UTI_TimevalToString(&tv);
}
/* ================================================== */
char *
UTI_RefidToString(uint32_t ref_id)
{
unsigned int i, j, c;
char *result;
result = NEXT_BUFFER;
for (i = j = 0; i < 4 && i < BUFFER_LENGTH - 1; i++) {
c = (ref_id >> (24 - i * 8)) & 0xff;
if (isprint(c))
result[j++] = c;
}
result[j] = '\0';
return result;
}
/* ================================================== */
char *
UTI_IPToString(IPAddr *addr)
{
unsigned long a, b, c, d, ip;
uint8_t *ip6;
char *result;
result = NEXT_BUFFER;
switch (addr->family) {
case IPADDR_UNSPEC:
snprintf(result, BUFFER_LENGTH, "[UNSPEC]");
break;
case IPADDR_INET4:
ip = addr->addr.in4;
a = (ip>>24) & 0xff;
b = (ip>>16) & 0xff;
c = (ip>> 8) & 0xff;
d = (ip>> 0) & 0xff;
snprintf(result, BUFFER_LENGTH, "%ld.%ld.%ld.%ld", a, b, c, d);
break;
case IPADDR_INET6:
ip6 = addr->addr.in6;
#ifdef FEAT_IPV6
inet_ntop(AF_INET6, ip6, result, BUFFER_LENGTH);
#else
snprintf(result, BUFFER_LENGTH, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x",
ip6[0], ip6[1], ip6[2], ip6[3], ip6[4], ip6[5], ip6[6], ip6[7],
ip6[8], ip6[9], ip6[10], ip6[11], ip6[12], ip6[13], ip6[14], ip6[15]);
#endif
break;
default:
snprintf(result, BUFFER_LENGTH, "[UNKNOWN]");
}
return result;
}
/* ================================================== */
int
UTI_StringToIP(const char *addr, IPAddr *ip)
{
#ifdef FEAT_IPV6
struct in_addr in4;
struct in6_addr in6;
if (inet_pton(AF_INET, addr, &in4) > 0) {
ip->family = IPADDR_INET4;
ip->addr.in4 = ntohl(in4.s_addr);
return 1;
}
if (inet_pton(AF_INET6, addr, &in6) > 0) {
ip->family = IPADDR_INET6;
memcpy(ip->addr.in6, in6.s6_addr, sizeof (ip->addr.in6));
return 1;
}
#else
unsigned long a, b, c, d, n;
n = sscanf(addr, "%lu.%lu.%lu.%lu", &a, &b, &c, &d);
if (n == 4) {
ip->family = IPADDR_INET4;
ip->addr.in4 = ((a & 0xff) << 24) | ((b & 0xff) << 16) |
((c & 0xff) << 8) | (d & 0xff);
return 1;
}
#endif
return 0;
}
/* ================================================== */
uint32_t
UTI_IPToRefid(IPAddr *ip)
{
static int MD5_hash = -1;
unsigned char buf[16];
switch (ip->family) {
case IPADDR_INET4:
return ip->addr.in4;
case IPADDR_INET6:
if (MD5_hash < 0) {
MD5_hash = HSH_GetHashId("MD5");
assert(MD5_hash >= 0);
}
if (HSH_Hash(MD5_hash, (unsigned const char *)ip->addr.in6, sizeof
(ip->addr.in6), NULL, 0, buf, 16) != 16) {
assert(0);
return 0;
};
return buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3];
}
return 0;
}
/* ================================================== */
void
UTI_IPHostToNetwork(IPAddr *src, IPAddr *dest)
{
/* Don't send uninitialized bytes over network */
memset(dest, 0, sizeof (IPAddr));
dest->family = htons(src->family);
switch (src->family) {
case IPADDR_INET4:
dest->addr.in4 = htonl(src->addr.in4);
break;
case IPADDR_INET6:
memcpy(dest->addr.in6, src->addr.in6, sizeof (dest->addr.in6));
break;
}
}
/* ================================================== */
void
UTI_IPNetworkToHost(IPAddr *src, IPAddr *dest)
{
dest->family = ntohs(src->family);
switch (dest->family) {
case IPADDR_INET4:
dest->addr.in4 = ntohl(src->addr.in4);
break;
case IPADDR_INET6:
memcpy(dest->addr.in6, src->addr.in6, sizeof (dest->addr.in6));
break;
}
}
/* ================================================== */
int
UTI_CompareIPs(IPAddr *a, IPAddr *b, IPAddr *mask)
{
int i, d;
if (a->family != b->family)
return a->family - b->family;
if (mask && mask->family != b->family)
mask = NULL;
switch (a->family) {
case IPADDR_UNSPEC:
return 0;
case IPADDR_INET4:
if (mask)
return (a->addr.in4 & mask->addr.in4) - (b->addr.in4 & mask->addr.in4);
else
return a->addr.in4 - b->addr.in4;
case IPADDR_INET6:
for (i = 0, d = 0; !d && i < 16; i++) {
if (mask)
d = (a->addr.in6[i] & mask->addr.in6[i]) -
(b->addr.in6[i] & mask->addr.in6[i]);
else
d = a->addr.in6[i] - b->addr.in6[i];
}
return d;
}
return 0;
}
/* ================================================== */
void
UTI_SockaddrToIPAndPort(struct sockaddr *sa, IPAddr *ip, unsigned short *port)
{
switch (sa->sa_family) {
case AF_INET:
ip->family = IPADDR_INET4;
ip->addr.in4 = ntohl(((struct sockaddr_in *)sa)->sin_addr.s_addr);
*port = ntohs(((struct sockaddr_in *)sa)->sin_port);
break;
#ifdef FEAT_IPV6
case AF_INET6:
ip->family = IPADDR_INET6;
memcpy(ip->addr.in6, ((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr,
sizeof (ip->addr.in6));
*port = ntohs(((struct sockaddr_in6 *)sa)->sin6_port);
break;
#endif
default:
ip->family = IPADDR_UNSPEC;
*port = 0;
}
}
/* ================================================== */
int
UTI_IPAndPortToSockaddr(IPAddr *ip, unsigned short port, struct sockaddr *sa)
{
switch (ip->family) {
case IPADDR_INET4:
memset(sa, 0, sizeof (struct sockaddr_in));
sa->sa_family = AF_INET;
((struct sockaddr_in *)sa)->sin_addr.s_addr = htonl(ip->addr.in4);
((struct sockaddr_in *)sa)->sin_port = htons(port);
#ifdef SIN6_LEN
((struct sockaddr_in *)sa)->sin_len = sizeof (struct sockaddr_in);
#endif
return sizeof (struct sockaddr_in);
#ifdef FEAT_IPV6
case IPADDR_INET6:
memset(sa, 0, sizeof (struct sockaddr_in6));
sa->sa_family = AF_INET6;
memcpy(((struct sockaddr_in6 *)sa)->sin6_addr.s6_addr, ip->addr.in6,
sizeof (ip->addr.in6));
((struct sockaddr_in6 *)sa)->sin6_port = htons(port);
#ifdef SIN6_LEN
((struct sockaddr_in6 *)sa)->sin6_len = sizeof (struct sockaddr_in6);
#endif
return sizeof (struct sockaddr_in6);
#endif
default:
memset(sa, 0, sizeof (struct sockaddr));
sa->sa_family = AF_UNSPEC;
return 0;
}
}
/* ================================================== */
char *
UTI_TimeToLogForm(time_t t)
{
struct tm stm;
char *result;
result = NEXT_BUFFER;
stm = *gmtime(&t);
strftime(result, BUFFER_LENGTH, "%Y-%m-%d %H:%M:%S", &stm);
return result;
}
/* ================================================== */
void
UTI_AdjustTimeval(struct timeval *old_tv, struct timeval *when, struct timeval *new_tv, double *delta_time, double dfreq, double doffset)
{
double elapsed;
UTI_DiffTimevalsToDouble(&elapsed, when, old_tv);
*delta_time = elapsed * dfreq - doffset;
UTI_AddDoubleToTimeval(old_tv, *delta_time, new_tv);
}
/* ================================================== */
uint32_t
UTI_GetNTPTsFuzz(int precision)
{
uint32_t fuzz;
int fuzz_bits;
fuzz_bits = 32 - 1 + precision;
fuzz = random() % (1 << fuzz_bits);
return fuzz;
}
/* ================================================== */
double
UTI_Int32ToDouble(NTP_int32 x)
{
return (double) ntohl(x) / 65536.0;
}
/* ================================================== */
#define MAX_NTP_INT32 (4294967295.0 / 65536.0)
NTP_int32
UTI_DoubleToInt32(double x)
{
if (x > MAX_NTP_INT32)
x = MAX_NTP_INT32;
else if (x < 0)
x = 0.0;
return htonl((NTP_int32)(0.5 + 65536.0 * x));
}
/* ================================================== */
/* Seconds part of NTP timestamp correponding to the origin of the
struct timeval format. */
#define JAN_1970 0x83aa7e80UL
void
UTI_TimevalToInt64(struct timeval *src,
NTP_int64 *dest, uint32_t fuzz)
{
uint32_t lo, sec, usec;
sec = (uint32_t)src->tv_sec;
usec = (uint32_t)src->tv_usec;
/* Recognize zero as a special case - it always signifies
an 'unknown' value */
if (!usec && !sec) {
dest->hi = dest->lo = 0;
} else {
dest->hi = htonl(sec + JAN_1970);
/* This formula gives an error of about 0.1us worst case */
lo = 4295 * usec - (usec>>5) - (usec>>9);
/* Add the fuzz */
lo ^= fuzz;
dest->lo = htonl(lo);
}
}
/* ================================================== */
void
UTI_Int64ToTimeval(NTP_int64 *src,
struct timeval *dest)
{
uint32_t ntp_sec, ntp_frac;
/* As yet, there is no need to check for zero - all processing that
has to detect that case is in the NTP layer */
ntp_sec = ntohl(src->hi);
ntp_frac = ntohl(src->lo);
#ifdef HAVE_LONG_TIME_T
dest->tv_sec = ntp_sec - (uint32_t)(NTP_ERA_SPLIT + JAN_1970) +
(time_t)NTP_ERA_SPLIT;
#else
dest->tv_sec = ntp_sec - JAN_1970;
#endif
/* Until I invent a slick way to do this, just do it the obvious way */
dest->tv_usec = (int)(0.5 + (double)(ntp_frac) / 4294.967296);
}
/* ================================================== */
/* Maximum offset between two sane times */
#define MAX_OFFSET 4294967296.0
int
UTI_IsTimeOffsetSane(struct timeval *tv, double offset)
{
double t;
/* Handle nan correctly here */
if (!(offset > -MAX_OFFSET && offset < MAX_OFFSET))
return 0;
UTI_TimevalToDouble(tv, &t);
t += offset;
/* Time before 1970 is not considered valid */
if (t < 0.0)
return 0;
#ifdef HAVE_LONG_TIME_T
/* Check if it's in the interval to which NTP time is mapped */
if (t < (double)NTP_ERA_SPLIT || t > (double)(NTP_ERA_SPLIT + (1LL << 32)))
return 0;
#endif
return 1;
}
/* ================================================== */
void
UTI_TimevalNetworkToHost(Timeval *src, struct timeval *dest)
{
uint32_t sec_low;
#ifdef HAVE_LONG_TIME_T
uint32_t sec_high;
#endif
dest->tv_usec = ntohl(src->tv_nsec) / 1000;
sec_low = ntohl(src->tv_sec_low);
#ifdef HAVE_LONG_TIME_T
sec_high = ntohl(src->tv_sec_high);
if (sec_high == TV_NOHIGHSEC)
sec_high = 0;
dest->tv_sec = (uint64_t)sec_high << 32 | sec_low;
#else
dest->tv_sec = sec_low;
#endif
}
/* ================================================== */
void
UTI_TimevalHostToNetwork(struct timeval *src, Timeval *dest)
{
dest->tv_nsec = htonl(src->tv_usec * 1000);
#ifdef HAVE_LONG_TIME_T
dest->tv_sec_high = htonl((uint64_t)src->tv_sec >> 32);
#else
dest->tv_sec_high = htonl(TV_NOHIGHSEC);
#endif
dest->tv_sec_low = htonl(src->tv_sec);
}
/* ================================================== */
#define FLOAT_EXP_BITS 7
#define FLOAT_EXP_MIN (-(1 << (FLOAT_EXP_BITS - 1)))
#define FLOAT_EXP_MAX (-FLOAT_EXP_MIN - 1)
#define FLOAT_COEF_BITS ((int)sizeof (int32_t) * 8 - FLOAT_EXP_BITS)
#define FLOAT_COEF_MIN (-(1 << (FLOAT_COEF_BITS - 1)))
#define FLOAT_COEF_MAX (-FLOAT_COEF_MIN - 1)
double
UTI_FloatNetworkToHost(Float f)
{
int32_t exp, coef, x;
x = ntohl(f.f);
exp = (x >> FLOAT_COEF_BITS) - FLOAT_COEF_BITS;
coef = x << FLOAT_EXP_BITS >> FLOAT_EXP_BITS;
return coef * pow(2.0, exp);
}
Float
UTI_FloatHostToNetwork(double x)
{
int32_t exp, coef, neg;
Float f;
if (x < 0.0) {
x = -x;
neg = 1;
} else {
neg = 0;
}
if (x < 1.0e-100) {
exp = coef = 0;
} else if (x > 1.0e100) {
exp = FLOAT_EXP_MAX;
coef = FLOAT_COEF_MAX + neg;
} else {
exp = log(x) / log(2) + 1;
coef = x * pow(2.0, -exp + FLOAT_COEF_BITS) + 0.5;
assert(coef > 0);
/* we may need to shift up to two bits down */
while (coef > FLOAT_COEF_MAX + neg) {
coef >>= 1;
exp++;
}
if (exp > FLOAT_EXP_MAX) {
/* overflow */
exp = FLOAT_EXP_MAX;
coef = FLOAT_COEF_MAX + neg;
} else if (exp < FLOAT_EXP_MIN) {
/* underflow */
if (exp + FLOAT_COEF_BITS >= FLOAT_EXP_MIN) {
coef >>= FLOAT_EXP_MIN - exp;
exp = FLOAT_EXP_MIN;
} else {
exp = coef = 0;
}
}
}
/* negate back */
if (neg)
coef = (uint32_t)-coef << FLOAT_EXP_BITS >> FLOAT_EXP_BITS;
f.f = htonl(exp << FLOAT_COEF_BITS | coef);
return f;
}
/* ================================================== */
int
UTI_FdSetCloexec(int fd)
{
int flags;
flags = fcntl(fd, F_GETFD);
if (flags != -1) {
flags |= FD_CLOEXEC;
return !fcntl(fd, F_SETFD, flags);
}
return 0;
}
/* ================================================== */
int
UTI_GenerateNTPAuth(int hash_id, const unsigned char *key, int key_len,
const unsigned char *data, int data_len, unsigned char *auth, int auth_len)
{
return HSH_Hash(hash_id, key, key_len, data, data_len, auth, auth_len);
}
/* ================================================== */
int
UTI_CheckNTPAuth(int hash_id, const unsigned char *key, int key_len,
const unsigned char *data, int data_len, const unsigned char *auth, int auth_len)
{
unsigned char buf[MAX_HASH_LENGTH];
return UTI_GenerateNTPAuth(hash_id, key, key_len, data, data_len,
buf, sizeof (buf)) == auth_len && !memcmp(buf, auth, auth_len);
}
/* ================================================== */
int
UTI_DecodePasswordFromText(char *key)
{
int i, j, len = strlen(key);
char buf[3], *p;
if (!strncmp(key, "ASCII:", 6)) {
memmove(key, key + 6, len - 6);
return len - 6;
} else if (!strncmp(key, "HEX:", 4)) {
if ((len - 4) % 2)
return 0;
for (i = 0, j = 4; j + 1 < len; i++, j += 2) {
buf[0] = key[j], buf[1] = key[j + 1], buf[2] = '\0';
key[i] = strtol(buf, &p, 16);
if (p != buf + 2)
return 0;
}
return i;
} else {
/* assume ASCII */
return len;
}
}