import torch import torch.nn as nn from torchvision import transforms class MeanShift(nn.Conv2d): def __init__( self, rgb_range = 1, norm_mean=(0.485, 0.456, 0.406), norm_std=(0.229, 0.224, 0.225), sign=-1): super(MeanShift, self).__init__(3, 3, kernel_size=1) std = torch.Tensor(norm_std) self.weight.data = torch.eye(3).view(3, 3, 1, 1) / std.view(3, 1, 1, 1) self.bias.data = sign * rgb_range * torch.Tensor(norm_mean) / std self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") for p in self.parameters(): p.requires_grad = False class perceptual_loss(nn.Module): def __init__(self, vgg): super(perceptual_loss, self).__init__() self.normalization_mean = [0.485, 0.456, 0.406] self.normalization_std = [0.229, 0.224, 0.225] self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.transform = MeanShift(norm_mean = self.normalization_mean, norm_std = self.normalization_std).to(self.device) self.vgg = vgg self.criterion = nn.MSELoss() def forward(self, HR, SR, layer = 'relu5_4'): ## HR and SR should be normalized [0,1] hr = self.transform(HR) sr = self.transform(SR) hr_feat = getattr(self.vgg(hr), layer) sr_feat = getattr(self.vgg(sr), layer) return self.criterion(hr_feat, sr_feat), hr_feat, sr_feat class TVLoss(nn.Module): def __init__(self, tv_loss_weight=1): super(TVLoss, self).__init__() self.tv_loss_weight = tv_loss_weight def forward(self, x): batch_size = x.size()[0] h_x = x.size()[2] w_x = x.size()[3] count_h = self.tensor_size(x[:, :, 1:, :]) count_w = self.tensor_size(x[:, :, :, 1:]) h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, :h_x - 1, :]), 2).sum() w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, :w_x - 1]), 2).sum() return self.tv_loss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size @staticmethod def tensor_size(t): return t.size()[1] * t.size()[2] * t.size()[3]