improved graphs with histogram and details

This commit is contained in:
Faraphel 2024-01-24 23:12:12 +01:00
parent 7a62e19b7f
commit a878d142bd
25 changed files with 240 additions and 128 deletions

View file

@ -5,3 +5,5 @@ nextcord~=2.6.0
requests~=2.31.0
cx_freeze
matplotlib~=3.8.2
numpy~=1.26.3

View file

@ -1,16 +1,11 @@
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
def analyse(datas: list[dict]):
ages_data = list(map(extract.age.extract, datas))
counter = Counter(ages_data)
x = list(counter.keys())
y = list(counter.values())
def analyse(datas: list[dict]) -> plt.Figure:
x = list(map(extract.age.extract, datas))
# prepare plotting
figure: plt.Figure = plt.figure()
@ -18,6 +13,7 @@ def analyse(datas: list[dict]):
axes.set_title("Nombre de personne par âge")
# bar chart
axes.bar(x, y)
bins = np.arange(min(x), max(x), 1)
axes.hist(x, bins=bins, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -6,7 +6,7 @@ import numpy as np
from tools.statistics import extract
def analyse(datas: list[dict]):
def analyse(datas: list[dict]) -> plt.Figure:
ages_completion: dict[int, int] = defaultdict(lambda: 0)
ages_count: dict[int, int] = defaultdict(lambda: 0)
@ -34,6 +34,7 @@ def analyse(datas: list[dict]):
axes.set_title("Nombre moyen de mission complété par âge")
# bar chart
axes.bar(x, y)
bins = np.arange(min(x), max(x), 1)
axes.hist(x, bins, weights=y, edgecolor="black")
plt.show(block=True)
return figure

View file

@ -1,12 +1,12 @@
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
experience_completion: dict[str, int] = {"yes": 0, "mixed": 0, "no": 0}
experience_count: dict[str, int] = {"yes": 0, "mixed": 0, "no": 0}
def analyse(datas: list[dict]) -> plt.Figure:
experience_completion: dict[str, int] = dict.fromkeys(ressource.experience.choices, 0)
experience_count: dict[str, int] = dict.fromkeys(ressource.experience.choices, 0)
for data in datas:
experience = extract.experience.extract(data)
@ -32,6 +32,6 @@ def analyse(datas: list[dict]):
axes.set_title("Nombre moyen de mission complété par expérience")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -0,0 +1,39 @@
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
def analyse(datas: list[dict]) -> plt.Figure:
languages_completion: dict[str, int] = defaultdict(lambda: 0)
languages_count: dict[str, int] = defaultdict(lambda: 0)
for data in datas:
language = extract.language.extract(data)
languages_count[language] += 1
for survey, survey_data in data["surveys"].items():
# only scan survey mission
if not survey.startswith("mission-"):
continue
if extract.mission_completed.extract(data, survey):
languages_completion[language] += 1
x = list(languages_completion.keys())
y = (
np.array(list(languages_completion.values()))
/ np.array(list(languages_count.values()))
)
# prepare plotting
figure: plt.Figure = plt.figure()
axes = figure.add_subplot(1, 1, 1)
axes.set_title("Nombre moyen de mission complété par langue")
# bar chart
axes.bar(x, y, edgecolor='black')
return figure

View file

@ -1,23 +1,12 @@
import matplotlib.pyplot as plt
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
completions: dict[str] = {
"mission-language": 0,
"mission-price": 0,
"mission-community-hub": 0,
"mission-game-page": 0,
"mission-game-dlc": 0,
"mission-actuality-new": 0,
"mission-profile": 0,
"mission-game-discussion": 0,
"mission-gift-card": 0,
"mission-workshop": 0,
}
def analyse(datas: list[dict]) -> plt.Figure:
completions: dict[str] = dict.fromkeys(ressource.mission.choices, 0)
# NOTE : séparé avant / après grosse mise à jour pour carte cadeau ?
# TODO : couleur par mission
for data in datas:
for survey in data["surveys"].keys():
@ -37,8 +26,8 @@ def analyse(datas: list[dict]):
axes.set_title("Nombre de personne ayant réussi par mission")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
axes.set_xticks(x)
axes.set_xticklabels(x, rotation=45)
plt.show(block=True)
return figure

View file

@ -1,12 +1,12 @@
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
usage_completion: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0}
usage_count: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0}
def analyse(datas: list[dict]) -> plt.Figure:
usage_completion: dict[str, int] = dict.fromkeys(ressource.usage.choices, 0)
usage_count: dict[str, int] = dict.fromkeys(ressource.usage.choices, 0)
for data in datas:
usage = next(filter(
@ -36,6 +36,6 @@ def analyse(datas: list[dict]):
axes.set_title("Nombre moyen de mission complété par niveau")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -6,11 +6,11 @@ import numpy as np
from tools.statistics import extract
def analyse(datas: list[dict]):
def analyse(datas: list[dict]) -> plt.Figure:
ages_duration: dict[int, int] = defaultdict(lambda: 0)
ages_count: dict[int, int] = defaultdict(lambda: 0)
# TODO: faire des tranches d'âges ?
# TODO: affichage en minutes ?
for data in datas:
age = extract.age.extract(data)
@ -35,6 +35,7 @@ def analyse(datas: list[dict]):
axes.set_title("Temps moyen passé par âge")
# bar chart
axes.bar(x, y)
bins = np.arange(min(x), max(x), 1)
axes.hist(x, bins, weights=y, edgecolor="black")
plt.show(block=True)
return figure

View file

@ -1,12 +1,12 @@
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
experience_duration: dict[str, int] = {"yes": 0, "mixed": 0, "no": 0}
experience_count: dict[str, int] = {"yes": 0, "mixed": 0, "no": 0}
def analyse(datas: list[dict]) -> plt.Figure:
experience_duration: dict[str, int] = dict.fromkeys(ressource.experience.choices, 0)
experience_count: dict[str, int] = dict.fromkeys(ressource.experience.choices, 0)
for data in datas:
experience = extract.experience.extract(data)
@ -32,6 +32,6 @@ def analyse(datas: list[dict]):
axes.set_title("Temps moyen passé par expérience")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -0,0 +1,38 @@
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
def analyse(datas: list[dict]) -> plt.Figure:
languages_duration: dict[str, int] = defaultdict(lambda: 0)
languages_count: dict[str, int] = defaultdict(lambda: 0)
for data in datas:
language = extract.language.extract(data)
languages_count[language] += 1
for survey in data["surveys"].keys():
# only scan survey mission
if not survey.startswith("mission-"):
continue
languages_duration[language] += extract.mission_duration.extract(data, survey)
x = list(languages_duration.keys())
y = (
np.array(list(languages_duration.values()))
/ np.array(list(languages_count.values()))
)
# prepare plotting
figure: plt.Figure = plt.figure()
axes = figure.add_subplot(1, 1, 1)
axes.set_title("Temps moyen passé par langue")
# bar chart
axes.bar(x, y, edgecolor='black')
return figure

View file

@ -1,25 +1,14 @@
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
durations: dict[str] = {
"mission-language": 0,
"mission-price": 0,
"mission-community-hub": 0,
"mission-game-page": 0,
"mission-game-dlc": 0,
"mission-actuality-new": 0,
"mission-profile": 0,
"mission-game-discussion": 0,
"mission-gift-card": 0,
"mission-workshop": 0,
}
def analyse(datas: list[dict]) -> plt.Figure:
durations: dict[str] = dict.fromkeys(ressource.mission.choices, 0)
# NOTE : séparé avant / après grosse mise à jour pour carte cadeau ?
# NOTE : marqué en rouge la durée d'abandon ?
# TODO : marqué en rouge la durée d'abandon ?
# TODO : couleur par mission
for data in datas:
for survey in data["surveys"].keys():
@ -38,8 +27,8 @@ def analyse(datas: list[dict]):
axes.set_title("Temps moyen passé par test")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
axes.set_xticks(x)
axes.set_xticklabels(x, rotation=45)
plt.show(block=True)
return figure

View file

@ -1,14 +1,12 @@
import matplotlib.pyplot as plt
import numpy as np
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
usage_completion: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0}
usage_count: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0}
# TODO: faire des tranches d'âges ?
def analyse(datas: list[dict]) -> plt.Figure:
usage_completion: dict[str, int] = dict.fromkeys(ressource.usage.choices, 0)
usage_count: dict[str, int] = dict.fromkeys(ressource.usage.choices, 0)
for data in datas:
usage = extract.usage.extract(data)
@ -33,6 +31,6 @@ def analyse(datas: list[dict]):
axes.set_title("Temps moyen passé par niveau")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -2,11 +2,11 @@ from collections import Counter
import matplotlib.pyplot as plt
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
experiences: dict[str, int] = {"yes": 0, "mixed": 0, "no": 0}
def analyse(datas: list[dict]) -> plt.Figure:
experiences: dict[str, int] = dict.fromkeys(ressource.experience.choices, 0)
for data in datas:
experience = extract.experience.extract(data)
experiences[experience] += 1
@ -21,6 +21,6 @@ def analyse(datas: list[dict]):
axes.set_title("Nombre de personne par expérience")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -1,21 +1,10 @@
import matplotlib.pyplot as plt
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
missions = {
"mission-language": 0,
"mission-price": 0,
"mission-community-hub": 0,
"mission-game-page": 0,
"mission-game-dlc": 0,
"mission-actuality-new": 0,
"mission-profile": 0,
"mission-game-discussion": 0,
"mission-gift-card": 0,
"mission-workshop": 0
}
def analyse(datas: list[dict]) -> plt.Figure:
missions = dict.fromkeys(ressource.mission.choices, 0)
for data in datas:
missions[extract.hardest_mission.extract(data)] += 1
@ -29,8 +18,8 @@ def analyse(datas: list[dict]):
axes.set_title("Mission la plus difficile des personnes sondées")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
axes.set_xticks(x)
axes.set_xticklabels(x, rotation=45)
plt.show(block=True)
return figure

View file

@ -0,0 +1,23 @@
from collections import Counter
import matplotlib.pyplot as plt
from tools.statistics import extract
def analyse(datas: list[dict]) -> plt.Figure:
languages = list(map(extract.language.extract, datas))
counter = Counter(languages)
x = list(counter.keys())
y = list(counter.values())
# prepare plotting
figure: plt.Figure = plt.figure()
axes = figure.add_subplot(1, 1, 1)
axes.set_title("Langue des personnes sondées")
# bar chart
axes.bar(x, y, edgecolor='black')
return figure

View file

@ -1,12 +1,12 @@
import matplotlib.pyplot as plt
from tools.statistics import extract
from tools.statistics import extract, ressource
def analyse(datas: list[dict]):
def analyse(datas: list[dict]) -> plt.Figure:
usage_data = list(map(extract.usage.extract, datas))
usages: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0}
usages: dict[str, int] = dict.fromkeys(ressource.usage.choices, 0)
for usage in usage_data:
usages[usage] += 1
@ -19,6 +19,6 @@ def analyse(datas: list[dict]):
axes.set_title("Expérience antérieure des personnes sondées")
# bar chart
axes.bar(x, y)
axes.bar(x, y, edgecolor='black')
plt.show(block=True)
return figure

View file

@ -4,3 +4,4 @@ from . import mission_duration
from . import mission_completed
from . import experience
from . import hardest_mission
from . import language

View file

@ -0,0 +1,2 @@
def extract(data: dict) -> str:
return data["language"]

View file

@ -2,30 +2,63 @@ from pathlib import Path
from tools.statistics.analyse import (age, usage, completion_per_mission, duration_per_mission, completion_per_age,
completion_per_usage, duration_per_age, duration_per_usage,
completion_per_experience, duration_per_experience, experience, hardest_mission)
completion_per_experience, duration_per_experience, experience, hardest_mission,
language, duration_per_language, completion_per_language)
if __name__ == "__main__":
from source.utils import compress
directory = Path(r"./sondage/")
# import matplotlib
# matplotlib.use("pgf")
# matplotlib.rcParams.update({
# "pgf.texsystem": "pdflatex",
# 'font.family': 'serif',
# 'font.size': 11,
# 'text.usetex': True,
# 'pgf.rcfonts': False,
# })
# read every people survey data
datas = [
sondage_path = Path(r"./sondage/")
graph_path = Path(r"./graph/")
graph_path.mkdir(parents=True, exist_ok=True)
# read every peoples survey data
datas_all = [
compress.uncompress_data(file.read_bytes()) # decompress the data
for file in directory.rglob("*.rsl")
for file in sondage_path.rglob("*.rsl")
]
age.analyse(datas)
usage.analyse(datas)
experience.analyse(datas)
hardest_mission.analyse(datas)
# keep only the datas before the steam new year update
datas_steam_version_1 = list(filter(lambda data: data["time"] < 1704409200, datas_all))
completion_per_mission.analyse(datas)
completion_per_age.analyse(datas)
completion_per_usage.analyse(datas)
completion_per_experience.analyse(datas)
# keep only the datas after the steam new year update
datas_steam_version_2 = list(filter(lambda data: data["time"] >= 1704409200, datas_all))
duration_per_mission.analyse(datas)
duration_per_age.analyse(datas)
duration_per_usage.analyse(datas)
duration_per_experience.analyse(datas)
# regroup all the datas
datasets = {
"all": datas_all,
"version_1": datas_steam_version_1,
"version_2": datas_steam_version_2,
}
for datas_name, datas in datasets.items():
directory = graph_path / datas_name
directory.mkdir(parents=True, exist_ok=True)
age.analyse(datas).savefig(directory / "age.svg")
usage.analyse(datas).savefig(directory / "usage.svg")
experience.analyse(datas).savefig(directory / "experience.svg")
hardest_mission.analyse(datas).savefig(directory / "hardest_mission.svg")
language.analyse(datas).savefig(directory / "language.svg")
completion_per_mission.analyse(datas).savefig(directory / "completion_per_mission.svg")
completion_per_age.analyse(datas).savefig(directory / "completion_per_age.svg")
completion_per_usage.analyse(datas).savefig(directory / "completion_per_usage.svg")
completion_per_experience.analyse(datas).savefig(directory / "completion_per_experience.svg")
completion_per_language.analyse(datas).savefig(directory / "completion_per_language.svg")
duration_per_mission.analyse(datas).savefig(directory / "duration_per_mission.svg")
duration_per_age.analyse(datas).savefig(directory / "duration_per_age.svg")
duration_per_usage.analyse(datas).savefig(directory / "duration_per_usage.svg")
duration_per_experience.analyse(datas).savefig(directory / "duration_per_experience.svg")
duration_per_language.analyse(datas).savefig(directory / "duration_per_language.svg")

View file

@ -0,0 +1,3 @@
from . import experience
from . import mission
from . import usage

View file

@ -0,0 +1 @@
choices = ["yes", "mixed", "no"]

View file

@ -0,0 +1,12 @@
choices = [
"mission-language",
"mission-price",
"mission-community-hub",
"mission-game-page",
"mission-game-dlc",
"mission-actuality-new",
"mission-profile",
"mission-game-discussion",
"mission-gift-card",
"mission-workshop",
]

View file

@ -0,0 +1 @@
choices = ["always", "often", "sometime", "rarely", "never"]

View file

@ -1,6 +0,0 @@
class IntegerQuestion:
def get_average(self, datas: list[int]):
return sum(datas) / len(datas)
def get_median(self, datas: list[int]):
return datas[len(datas) // 2]