from collections import defaultdict import matplotlib.pyplot as plt import numpy as np from tools.statistics import extract def analyse(datas: list[dict]): ages_completion: dict[int, int] = defaultdict(lambda: 0) ages_count: dict[int, int] = defaultdict(lambda: 0) for data in datas: age = extract.age.extract(data) ages_count[age] += 1 for survey, survey_data in data["surveys"].items(): # only scan survey mission if not survey.startswith("mission-"): continue if extract.mission_completed.extract(data, survey): ages_completion[age] += 1 x = list(ages_completion.keys()) y = ( np.array(list(ages_completion.values())) / np.array(list(ages_count.values())) ) # prepare plotting figure: plt.Figure = plt.figure() axes = figure.add_subplot(1, 1, 1) axes.set_title("Nombre moyen de mission complété par âge") # bar chart axes.bar(x, y) plt.show(block=True)