import matplotlib.pyplot as plt import numpy as np from tools.statistics import extract def analyse(datas: list[dict]): usage_completion: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0} usage_count: dict[str, int] = {"always": 0, "often": 0, "sometime": 0, "rarely": 0, "never": 0} for data in datas: usage = next(filter( lambda it: it[1]["checked"], data["surveys"]["question-usage-steam"]["choices"].items() ))[0] usage_count[usage] += 1 for survey in data["surveys"].keys(): # only scan survey mission if not survey.startswith("mission-"): continue if extract.mission_completed.extract(data, survey): usage_completion[usage] += 1 x = list(usage_completion.keys()) y = ( np.array(list(usage_completion.values())) / np.array(list(usage_count.values())) ) # prepare plotting figure: plt.Figure = plt.figure() axes = figure.add_subplot(1, 1, 1) axes.set_title("Nombre moyen de mission complété par niveau") # bar chart axes.bar(x, y) plt.show(block=True)