Move the implementation of the median filter to a separate file to make it useful for NTP. Replace some constants with parameters and generalize the code to work with full NTP samples (including root dispersion/delay, stratum, and leap). For refclocks it should give the same results as before.
431 lines
11 KiB
C
431 lines
11 KiB
C
/*
|
|
chronyd/chronyc - Programs for keeping computer clocks accurate.
|
|
|
|
**********************************************************************
|
|
* Copyright (C) Miroslav Lichvar 2009-2011, 2014, 2016, 2018
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
**********************************************************************
|
|
|
|
=======================================================================
|
|
|
|
Routines implementing a median sample filter.
|
|
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "local.h"
|
|
#include "logging.h"
|
|
#include "memory.h"
|
|
#include "regress.h"
|
|
#include "samplefilt.h"
|
|
#include "util.h"
|
|
|
|
#define MIN_SAMPLES 1
|
|
#define MAX_SAMPLES 256
|
|
|
|
struct SPF_Instance_Record {
|
|
int min_samples;
|
|
int max_samples;
|
|
int index;
|
|
int used;
|
|
int last;
|
|
int avg_var_n;
|
|
double avg_var;
|
|
double max_var;
|
|
double combine_ratio;
|
|
NTP_Sample *samples;
|
|
int *selected;
|
|
double *x_data;
|
|
double *y_data;
|
|
double *w_data;
|
|
};
|
|
|
|
/* ================================================== */
|
|
|
|
SPF_Instance
|
|
SPF_CreateInstance(int min_samples, int max_samples, double max_dispersion, double combine_ratio)
|
|
{
|
|
SPF_Instance filter;
|
|
|
|
filter = MallocNew(struct SPF_Instance_Record);
|
|
|
|
min_samples = CLAMP(MIN_SAMPLES, min_samples, MAX_SAMPLES);
|
|
max_samples = CLAMP(MIN_SAMPLES, max_samples, MAX_SAMPLES);
|
|
max_samples = MAX(min_samples, max_samples);
|
|
combine_ratio = CLAMP(0.0, combine_ratio, 1.0);
|
|
|
|
filter->min_samples = min_samples;
|
|
filter->max_samples = max_samples;
|
|
filter->index = -1;
|
|
filter->used = 0;
|
|
filter->last = -1;
|
|
/* Set the first estimate to the system precision */
|
|
filter->avg_var_n = 0;
|
|
filter->avg_var = LCL_GetSysPrecisionAsQuantum() * LCL_GetSysPrecisionAsQuantum();
|
|
filter->max_var = max_dispersion * max_dispersion;
|
|
filter->combine_ratio = combine_ratio;
|
|
filter->samples = MallocArray(NTP_Sample, filter->max_samples);
|
|
filter->selected = MallocArray(int, filter->max_samples);
|
|
filter->x_data = MallocArray(double, filter->max_samples);
|
|
filter->y_data = MallocArray(double, filter->max_samples);
|
|
filter->w_data = MallocArray(double, filter->max_samples);
|
|
|
|
return filter;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
SPF_DestroyInstance(SPF_Instance filter)
|
|
{
|
|
Free(filter->samples);
|
|
Free(filter->selected);
|
|
Free(filter->x_data);
|
|
Free(filter->y_data);
|
|
Free(filter->w_data);
|
|
Free(filter);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
SPF_AccumulateSample(SPF_Instance filter, NTP_Sample *sample)
|
|
{
|
|
filter->index++;
|
|
filter->index %= filter->max_samples;
|
|
filter->last = filter->index;
|
|
if (filter->used < filter->max_samples)
|
|
filter->used++;
|
|
|
|
filter->samples[filter->index] = *sample;
|
|
|
|
DEBUG_LOG("filter sample %d t=%s offset=%.9f peer_disp=%.9f",
|
|
filter->index, UTI_TimespecToString(&sample->time),
|
|
sample->offset, sample->peer_dispersion);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
int
|
|
SPF_GetLastSample(SPF_Instance filter, NTP_Sample *sample)
|
|
{
|
|
if (filter->last < 0)
|
|
return 0;
|
|
|
|
*sample = filter->samples[filter->last];
|
|
return 1;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
int
|
|
SPF_GetNumberOfSamples(SPF_Instance filter)
|
|
{
|
|
return filter->used;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
double
|
|
SPF_GetAvgSampleDispersion(SPF_Instance filter)
|
|
{
|
|
return sqrt(filter->avg_var);
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
SPF_DropSamples(SPF_Instance filter)
|
|
{
|
|
filter->index = -1;
|
|
filter->used = 0;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static const NTP_Sample *tmp_sort_samples;
|
|
|
|
static int
|
|
compare_samples(const void *a, const void *b)
|
|
{
|
|
const NTP_Sample *s1, *s2;
|
|
|
|
s1 = &tmp_sort_samples[*(int *)a];
|
|
s2 = &tmp_sort_samples[*(int *)b];
|
|
|
|
if (s1->offset < s2->offset)
|
|
return -1;
|
|
else if (s1->offset > s2->offset)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static int
|
|
select_samples(SPF_Instance filter)
|
|
{
|
|
int i, j, k, o, from, to, *selected;
|
|
double min_dispersion;
|
|
|
|
if (filter->used < filter->min_samples)
|
|
return 0;
|
|
|
|
selected = filter->selected;
|
|
|
|
/* With 4 or more samples, select those that have peer dispersion smaller
|
|
than 1.5x of the minimum dispersion */
|
|
if (filter->used > 4) {
|
|
for (i = 1, min_dispersion = filter->samples[0].peer_dispersion; i < filter->used; i++) {
|
|
if (min_dispersion > filter->samples[i].peer_dispersion)
|
|
min_dispersion = filter->samples[i].peer_dispersion;
|
|
}
|
|
|
|
for (i = j = 0; i < filter->used; i++) {
|
|
if (filter->samples[i].peer_dispersion <= 1.5 * min_dispersion)
|
|
selected[j++] = i;
|
|
}
|
|
} else {
|
|
j = 0;
|
|
}
|
|
|
|
if (j < 4) {
|
|
/* Select all samples */
|
|
|
|
for (j = 0; j < filter->used; j++)
|
|
selected[j] = j;
|
|
}
|
|
|
|
/* And sort their indices by offset */
|
|
tmp_sort_samples = filter->samples;
|
|
qsort(selected, j, sizeof (int), compare_samples);
|
|
|
|
/* Select samples closest to the median */
|
|
if (j > 2) {
|
|
from = j * (1.0 - filter->combine_ratio) / 2.0;
|
|
from = CLAMP(1, from, (j - 1) / 2);
|
|
} else {
|
|
from = 0;
|
|
}
|
|
|
|
to = j - from;
|
|
|
|
/* Mark unused samples and sort the rest by their time */
|
|
|
|
o = filter->used - filter->index - 1;
|
|
|
|
for (i = 0; i < from; i++)
|
|
selected[i] = -1;
|
|
for (; i < to; i++)
|
|
selected[i] = (selected[i] + o) % filter->used;
|
|
for (; i < filter->used; i++)
|
|
selected[i] = -1;
|
|
|
|
for (i = from; i < to; i++) {
|
|
j = selected[i];
|
|
selected[i] = -1;
|
|
while (j != -1 && selected[j] != j) {
|
|
k = selected[j];
|
|
selected[j] = j;
|
|
j = k;
|
|
}
|
|
}
|
|
|
|
for (i = j = 0, k = -1; i < filter->used; i++) {
|
|
if (selected[i] != -1)
|
|
selected[j++] = (selected[i] + filter->used - o) % filter->used;
|
|
}
|
|
|
|
assert(j > 0 && j <= filter->max_samples);
|
|
|
|
return j;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
static int
|
|
combine_selected_samples(SPF_Instance filter, int n, NTP_Sample *result)
|
|
{
|
|
double mean_peer_dispersion, mean_root_dispersion, mean_peer_delay, mean_root_delay;
|
|
double mean_x, mean_y, disp, var, prev_avg_var;
|
|
NTP_Sample *sample, *last_sample;
|
|
int i, dof;
|
|
|
|
last_sample = &filter->samples[filter->selected[n - 1]];
|
|
|
|
/* Prepare data */
|
|
for (i = 0; i < n; i++) {
|
|
sample = &filter->samples[filter->selected[i]];
|
|
|
|
filter->x_data[i] = UTI_DiffTimespecsToDouble(&sample->time, &last_sample->time);
|
|
filter->y_data[i] = sample->offset;
|
|
filter->w_data[i] = sample->peer_dispersion;
|
|
}
|
|
|
|
/* Calculate mean offset and interval since the last sample */
|
|
for (i = 0, mean_x = mean_y = 0.0; i < n; i++) {
|
|
mean_x += filter->x_data[i];
|
|
mean_y += filter->y_data[i];
|
|
}
|
|
mean_x /= n;
|
|
mean_y /= n;
|
|
|
|
if (n >= 4) {
|
|
double b0, b1, s2, sb0, sb1;
|
|
|
|
/* Set y axis to the mean sample time */
|
|
for (i = 0; i < n; i++)
|
|
filter->x_data[i] -= mean_x;
|
|
|
|
/* Make a linear fit and use the estimated standard deviation of the
|
|
intercept as dispersion */
|
|
RGR_WeightedRegression(filter->x_data, filter->y_data, filter->w_data, n,
|
|
&b0, &b1, &s2, &sb0, &sb1);
|
|
var = s2;
|
|
disp = sb0;
|
|
dof = n - 2;
|
|
} else if (n >= 2) {
|
|
for (i = 0, disp = 0.0; i < n; i++)
|
|
disp += (filter->y_data[i] - mean_y) * (filter->y_data[i] - mean_y);
|
|
var = disp / (n - 1);
|
|
disp = sqrt(var);
|
|
dof = n - 1;
|
|
} else {
|
|
var = filter->avg_var;
|
|
disp = sqrt(var);
|
|
dof = 1;
|
|
}
|
|
|
|
/* Avoid working with zero dispersion */
|
|
if (var < 1e-20) {
|
|
var = 1e-20;
|
|
disp = sqrt(var);
|
|
}
|
|
|
|
/* Drop the sample if the variance is larger than the maximum */
|
|
if (filter->max_var > 0.0 && var > filter->max_var) {
|
|
DEBUG_LOG("filter dispersion too large disp=%.9f max=%.9f",
|
|
sqrt(var), sqrt(filter->max_var));
|
|
return 0;
|
|
}
|
|
|
|
prev_avg_var = filter->avg_var;
|
|
|
|
/* Update the exponential moving average of the variance */
|
|
if (filter->avg_var_n > 50) {
|
|
filter->avg_var += dof / (dof + 50.0) * (var - filter->avg_var);
|
|
} else {
|
|
filter->avg_var = (filter->avg_var * filter->avg_var_n + var * dof) /
|
|
(dof + filter->avg_var_n);
|
|
if (filter->avg_var_n == 0)
|
|
prev_avg_var = filter->avg_var;
|
|
filter->avg_var_n += dof;
|
|
}
|
|
|
|
/* Use the long-term average of variance instead of the estimated value
|
|
unless it is significantly smaller in order to reduce the noise in
|
|
sourcestats weights */
|
|
if (var * dof / RGR_GetChi2Coef(dof) < prev_avg_var)
|
|
disp = sqrt(filter->avg_var) * disp / sqrt(var);
|
|
|
|
mean_peer_dispersion = mean_root_dispersion = mean_peer_delay = mean_root_delay = 0.0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
sample = &filter->samples[filter->selected[i]];
|
|
|
|
mean_peer_dispersion += sample->peer_dispersion;
|
|
mean_root_dispersion += sample->root_dispersion;
|
|
mean_peer_delay += sample->peer_delay;
|
|
mean_root_delay += sample->root_delay;
|
|
}
|
|
|
|
mean_peer_dispersion /= n;
|
|
mean_root_dispersion /= n;
|
|
mean_peer_delay /= n;
|
|
mean_root_delay /= n;
|
|
|
|
UTI_AddDoubleToTimespec(&last_sample->time, mean_x, &result->time);
|
|
result->offset = mean_y;
|
|
result->peer_dispersion = MAX(disp, mean_peer_dispersion);
|
|
result->root_dispersion = MAX(disp, mean_root_dispersion);
|
|
result->peer_delay = mean_peer_delay;
|
|
result->root_delay = mean_root_delay;
|
|
result->stratum = last_sample->stratum;
|
|
result->leap = last_sample->leap;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
int
|
|
SPF_GetFilteredSample(SPF_Instance filter, NTP_Sample *sample)
|
|
{
|
|
int n;
|
|
|
|
n = select_samples(filter);
|
|
|
|
if (n < 1)
|
|
return 0;
|
|
|
|
if (!combine_selected_samples(filter, n, sample))
|
|
return 0;
|
|
|
|
SPF_DropSamples(filter);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
SPF_SlewSamples(SPF_Instance filter, struct timespec *when, double dfreq, double doffset)
|
|
{
|
|
int i, first, last;
|
|
double delta_time;
|
|
|
|
if (filter->last < 0)
|
|
return;
|
|
|
|
/* Always slew the last sample as it may be returned even if no new
|
|
samples were accumulated */
|
|
if (filter->used > 0) {
|
|
first = 0;
|
|
last = filter->used - 1;
|
|
} else {
|
|
first = last = filter->last;
|
|
}
|
|
|
|
for (i = first; i <= last; i++) {
|
|
UTI_AdjustTimespec(&filter->samples[i].time, when, &filter->samples[i].time,
|
|
&delta_time, dfreq, doffset);
|
|
filter->samples[i].offset -= delta_time;
|
|
}
|
|
}
|
|
|
|
/* ================================================== */
|
|
|
|
void
|
|
SPF_AddDispersion(SPF_Instance filter, double dispersion)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < filter->used; i++) {
|
|
filter->samples[i].peer_dispersion += dispersion;
|
|
filter->samples[i].root_dispersion += dispersion;
|
|
}
|
|
}
|