When a server/peer was specified with a key number to enable
authentication with a symmetric key, packets received from the
server/peer were accepted if they were authenticated with any of
the keys contained in the key file and not just the specified key.
This allowed an attacker who knew one key of a client/peer to modify
packets from its servers/peers that were authenticated with other
keys in a man-in-the-middle (MITM) attack. For example, in a network
where each NTP association had a separate key and all hosts had only
keys they needed, a client of a server could not attack other clients
of the server, but it could attack the server and also attack its own
clients (i.e. modify packets from other servers).
To not allow the server/peer to be authenticated with other keys
extend the authentication test to check if the key ID in the received
packet is equal to the configured key number. As a consequence, it's
no longer possible to authenticate two peers to each other with two
different keys, both peers have to be configured to use the same key.
This issue was discovered by Matt Street of Cisco ASIG.
When allocating memory to save unacknowledged replies to authenticated
command requests, the last "next" pointer was not initialized to NULL.
When all allocated reply slots were used, the next reply could be
written to an invalid memory instead of allocating a new slot for it.
An attacker that has the command key and is allowed to access cmdmon
(only localhost is allowed by default) could exploit this to crash
chronyd or possibly execute arbitrary code with the privileges of the
chronyd process.
When NTP or cmdmon access was configured (from chrony.conf or via
authenticated cmdmon) with a subnet size that is indivisible by 4 and
an address that has nonzero bits in the 4-bit subnet remainder (e.g.
192.168.15.0/22 or f000::/3), the new setting was written to an
incorrect location, possibly outside the allocated array.
An attacker that has the command key and is allowed to access cmdmon
(only localhost is allowed by default) could exploit this to crash
chronyd or possibly execute arbitrary code with the privileges of the
chronyd process.
An attacker knowing that NTP hosts A and B are peering with each other
(symmetric association) can send a packet with random timestamps to host
A with source address of B which will set the NTP state variables on A
to the values sent by the attacker. Host A will then send on its next
poll to B a packet with originate timestamp that doesn't match the
transmit timestamp of B and the packet will be dropped. If the attacker
does this periodically for both hosts, they won't be able to synchronize
to each other. It is a denial-of-service attack.
According to [1], NTP authentication is supposed to protect symmetric
associations against this attack, but in the NTPv3 (RFC 1305) and NTPv4
(RFC 5905) specifications the state variables are updated before the
authentication check is performed, which means the association is
vulnerable to the attack even when authentication is enabled.
To fix this problem, save the originate and local timestamps only when
the authentication check (test5) passed.
[1] https://www.eecis.udel.edu/~mills/onwire.html
When current time is within 5 seconds of a leap second, don't accumulate
new samples or update the leap second status to increase the chances of
getting through safely.
Don't stop online burst for unreachable sources until sending succeeds.
This is mainly useful with iburst when chronyd is started before the
network is configured.
To detect forward time jumps, use a timestamp made before calling
select() instead of the first timeout in the queue. Also, if the timeout
value is modified by select() (e.g. on Linux) use it to get a more
accurate estimate of the elapsed time.
When the RTC preinit function fails, set the system clock to the time of
the last modification of the driftfile if it's in the future. This makes
the -s option somewhat useful on systems where RTC is not supported or
missing.
This is similar to the functionality implemented in the fake-hwclock
script.